Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Bioorg Med Chem Lett ; 25(21): 4941-4944, 2015 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-25987375

RESUMEN

Facilitating activation, or delaying inactivation, of the native Kv7 channel reduces neuronal excitability, which may be beneficial in controlling spontaneous electrical activity during epileptic seizures. In an effort to identify a compound with such properties, the structure-activity relationship (SAR) and in vitro ADME for a series of heterocyclic Kv7.2-7.5 channel openers was explored. PF-05020182 (2) demonstrated suitable properties for further testing in vivo where it dose-dependently decreased the number of animals exhibiting full tonic extension convulsions in response to corneal stimulation in the maximal electroshock (MES) assay. In addition, PF-05020182 (2) significantly inhibited convulsions in the MES assay at doses tested, consistent with in vitro activity measure. The physiochemical properties, in vitro and in vivo activities of PF-05020182 (2) support further development as an adjunctive treatment of refractory epilepsy.


Asunto(s)
Descubrimiento de Drogas , Epilepsia/tratamiento farmacológico , Activación del Canal Iónico/efectos de los fármacos , Canal de Potasio KCNQ2/metabolismo , Piperidinas/farmacología , Pirimidinas/farmacología , Animales , Línea Celular , Relación Dosis-Respuesta a Droga , Electrochoque , Humanos , Canal de Potasio KCNQ2/agonistas , Microsomas/efectos de los fármacos , Estructura Molecular , Piperidinas/administración & dosificación , Piperidinas/química , Pirimidinas/administración & dosificación , Pirimidinas/química , Ratas , Relación Estructura-Actividad
2.
Bioorg Med Chem Lett ; 23(7): 1961-6, 2013 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-23466229

RESUMEN

The structure-based design, synthesis, and biological evaluation of a new pyrazole series of irreversible KAT II inhibitors are described herein. The modification of the inhibitor scaffold of 1 and 2 from a dihydroquinolinone core to a tetrahydropyrazolopyridinone core led to discovery of a new series of potent KAT II inhibitors with excellent physicochemical properties. Compound 20 is the most potent and lipophilically efficient of these new pyrazole analogs, with a k(inact)/K(i) value of 112,000 M(-1)s(-1) and lipophilic efficiency (LipE) of 8.53. The X-ray crystal structure of 20 with KAT II demonstrates key features that contribute to this remarkable potency and binding efficiency.


Asunto(s)
Diseño de Fármacos , Inhibidores Enzimáticos/farmacología , Pirazoles/farmacología , Transaminasas/antagonistas & inhibidores , Dominio Catalítico/efectos de los fármacos , Cristalografía por Rayos X , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Humanos , Interacciones Hidrofóbicas e Hidrofílicas/efectos de los fármacos , Modelos Moleculares , Estructura Molecular , Pirazoles/síntesis química , Pirazoles/química , Relación Estructura-Actividad , Transaminasas/metabolismo
3.
ACS Med Chem Lett ; 3(3): 187-92, 2012 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-24900455

RESUMEN

Kynurenine aminotransferase (KAT) II has been identified as a potential new target for the treatment of cognitive impairment associated with schizophrenia and other psychiatric disorders. Following a high-throughput screen, cyclic hydroxamic acid PF-04859989 was identified as a potent and selective inhibitor of human and rat KAT II. An X-ray crystal structure and (13)C NMR studies of PF-04859989 bound to KAT II have demonstrated that this compound forms a covalent adduct with the enzyme cofactor, pyridoxal phosphate (PLP), in the active site. In vivo pharmacokinetic and efficacy studies in rat show that PF-04859989 is a brain-penetrant, irreversible inhibitor and is capable of reducing brain kynurenic acid by 50% at a dose of 10 mg/kg (sc). Preliminary structure-activity relationship investigations have been completed and have identified the positions on this scaffold best suited to modification for further optimization of this novel series of KAT II inhibitors.

4.
J Med Chem ; 45(19): 4140-52, 2002 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-12213057

RESUMEN

Glutamate carboxypeptidase II (GCPII, NAALADase, or NAAG peptidase) is a catalytic zinc metallopeptidase. Its extracellular domain hydrolyzes the abundant neuropeptide, N-acetyl-L-aspartyl-L-glutamate (NAAG), to produce N-acetylaspartate and glutamate following the synaptic release of this transmitter. Thus, GCPII influences the extracellular concentrations of both glutamate and NAAG. NAAG activates group II metabotropic glutamate receptors, and activation of this receptor has been found to protect against anoxia-induced excitotoxic nerve cell death. In contrast, high levels of glutamate can be neurotoxic. Thus, GCPII is a potential therapeutic target for the reduction of excitotoxic levels of glutamate and enhancement of extracellular NAAG. To explore the structural basis of the interaction between GCPII and its inhibitors, we modeled the three-dimensional structure of the GCPII extracellular domain using a homology modeling approach. On the basis of the GCPII model, the structures of GCPII in complex with its potent inhibitors 2-(phosphonomethyl)pentanedioic acid (PMPA) and 4,4'-phosphinicobis(butane-1,3-dicarboxylic acid) (PBDA) were built by a computational docking method. The model of GCPII mainly consists of two alpha/beta/alpha sandwiches, between which two zinc ions are quadrivalently coordinated by the His379-Asp389-Asp455-H(2)O and the Asp389-Glu427-His555-H(2)O clusters, respectively. The ligand binding pocket is situated between these two sandwiches and is comprised of two subpockets: one is a surface-exposed highly positively charged subpocket; the other is a buried hydrophobic subpocket. The positively charged subpocket can accommodate the pharmacophore groups of inhibitor molecules (PMPA and PBDA) through the coordination of Zn(2+) with their phosphorus functionality and hydrogen-bonding interactions with Arg536, Arg538, and Ser456 (or Asn521), while the hydrophobic subpocket is engaged in hydrophobic and hydrogen-bonding interactions with the nonpharmacophore groups of PBDA. The predicted binding mode is consistent with the experimental data obtained from site-directed mutagenesis. On the basis of the predicted interaction mode, our structure-based design has led to a series of highly potent GCPII inhibitors.


Asunto(s)
Carboxipeptidasas/antagonistas & inhibidores , Dipéptidos/química , Inhibidores Enzimáticos/química , Glutaratos/química , Compuestos Organofosforados/química , Ácidos Fosfínicos/química , Secuencia de Aminoácidos , Carboxipeptidasas/química , Glutamato Carboxipeptidasa II , Enlace de Hidrógeno , Ligandos , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Homología de Secuencia de Aminoácido , Electricidad Estática , Relación Estructura-Actividad
5.
Bioorg Med Chem Lett ; 12(7): 993-5, 2002 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-11909701
6.
J Med Chem ; 45(4): 853-60, 2002 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-11831896

RESUMEN

The Ras guanyl releasing protein RasGRP belongs to the CDC25 class of guanyl nucleotide exchange factors that regulate Ras-related GTPases. These GTPases serve as switches for the propagation and divergence of signaling pathways. One interesting feature of RasGRP is the presence of a C-terminal C1 domain, which has high homology to the PKC C1 domain and binds to diacylglycerol (DAG) and phorbol esters. RasGRP thus represents a novel, non-kinase phorbol ester receptor. In this paper, we investigate the binding of indolactam(V) (ILV), 7-(n-octyl)-ILV, 8-(1-decynyl)benzolactam(V) (benzolactam), and 7-methoxy-8-(1-decynyl)benzolactam(V) (methoxylated benzolactam) to RasGRP through both experimental binding assays and molecular modeling studies. The binding affinities of these lactams to RasGRP are within the nanomolar range. Homology modeling was used to model the structure of the RasGRP C1 domain (C1-RasGRP), which was subsequently used to model the structures of C1-RasGRP in complex with these ligands and phorbol 13-acetate using a computational docking method. The structural model of C1-RasGRP exhibits a folding pattern that is nearly identical to that of C1b-PKCdelta and is comprised of three antiparallel-strand beta-sheets capped against a C-terminal alpha-helix. Two loops A and B comprising residues 8-12 and 21-27 form a binding pocket that has some positive charge character. The ligands phorbol 13-acetate, benzolactam, and ILV are recognized by C1-RasGRP through a number of hydrogen bonds with loops A and B. In the models of C1-RasGRP in complex with phorbol 13-acetate, benzolactam, and ILV, common hydrogen bonds are formed with two residues Thr12 and Leu21, whereas other hydrogen bond interactions are unique for each ligand. Furthermore, our modeling results suggest that the shallower insertion of ligands into the binding pocket of C1-RasGRP compared to C1b-PKCdelta may be due to the presence of Phe rather than Leu at position 20 in C1-RasGRP. Taken together, our experimental and modeling studies provide us with a better understanding of the structural basis of the binding of PKC ligands to the novel phorbol ester receptor RasGRP.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Factores de Intercambio de Guanina Nucleótido , Indoles/metabolismo , Isoenzimas/metabolismo , Lactamas/metabolismo , Ésteres del Forbol/metabolismo , Proteína Quinasa C/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas de Unión al ADN/química , Enlace de Hidrógeno , Indoles/química , Isoenzimas/química , Lactamas/química , Ligandos , Modelos Moleculares , Datos de Secuencia Molecular , Ésteres del Forbol/química , Proteína Quinasa C/química , Proteína Quinasa C-delta , Ratas , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA