Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Technol ; 58(12): 5229-5243, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38466915

RESUMEN

Silicone-based passive samplers, commonly paired with gas chromatography-mass spectrometry (GC-MS) analysis, are increasingly utilized for personal exposure assessments. However, its compatibility with the biotic exposome remains underexplored. In this study, we introduce the wearable silicone-based AirPie passive sampler, coupled with nontargeted liquid chromatography with high-resolution tandem mass spectrometry (LC-HRMS/MS), GC-HRMS, and metagenomic shotgun sequencing methods, offering a comprehensive view of personalized airborne biotic and abiotic exposomes. We applied the AirPie samplers to 19 participants in a unique deep underwater confined environment, annotating 4,390 chemical and 2,955 microbial exposures, integrated with corresponding transcriptomic data. We observed significant shifts in environmental exposure and gene expression upon entering this unique environment. We noted increased exposure to pollutants, such as benzenoids, polycyclic aromatic hydrocarbons (PAHs), opportunistic pathogens, and associated antibiotic-resistance genes (ARGs). Transcriptomic analyses revealed the activation of neurodegenerative disease-related pathways, mostly related to chemical exposure, and the repression of immune-related pathways, linked to both biological and chemical exposures. In summary, we provided a comprehensive, longitudinal exposome map of the unique environment and underscored the intricate linkages between external exposures and human health. We believe that the AirPie sampler and associated analytical methods will have broad applications in exposome and precision medicine.


Asunto(s)
Exposoma , Enfermedades Neurodegenerativas , Hidrocarburos Policíclicos Aromáticos , Dispositivos Electrónicos Vestibles , Humanos , Espacios Confinados , Transcriptoma , Monitoreo del Ambiente/métodos , Siliconas
2.
Gen Comp Endocrinol ; 350: 114472, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38373462

RESUMEN

Heart development is a delicate and complex process regulated by coordination of various signaling pathways. In this study, we investigated the role of sox18 in heart development by modulating Wnt/ß-Catenin signaling pathways. Our spatiotemporal expression analysis revealed that sox18 is mainly expressed in the heart, branchial arch, pharyngeal arch, spinal cord, and intersegmental vessels at the tailbud stage of Xenopus tropicalis embryo. Overexpression of sox18 in the X. tropicalis embryos causes heart edema, while loss-of-function of sox18 can change the signal of developmental heart marker gata4 at different stages, suggesting that sox18 plays an essential role in the development of the heart. Knockdown of SOX18 in human umbilical vein endothelial cells suggests a link between Sox18 and ß-CATENIN, a key regulator of the Wnt signaling pathway. Sox18 negatively regulates islet1 and tbx3, the downstream factors of Wnt/ß-Catenin signaling, during the linear heart tube formation and the heart looping stage. Taken together, our findings highlight the crucial role of Sox18 in the development of the heart via inhibiting Wnt/ß-Catenin signaling.


Asunto(s)
Factores de Transcripción SOXF , Proteínas de Xenopus , beta Catenina , Animales , Humanos , beta Catenina/genética , Células Endoteliales/metabolismo , Regulación del Desarrollo de la Expresión Génica , Factores de Transcripción SOXF/genética , Factores de Transcripción SOXF/metabolismo , Vía de Señalización Wnt , Xenopus/metabolismo , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo
3.
Zool Res ; 44(3): 663-674, 2023 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-37161653

RESUMEN

The biological function of the novel zinc-finger SWIM domain-containing protein family (ZSWIM) during embryonic development remains elusive. Here, we conducted a genome-wide analysis to explore the evolutionary processes of the ZSWIM gene family members in mice, Xenopus tropicalis, zebrafish, and humans. We identified nine putative ZSWIM genes in the human and mouse genome, eight in the Xenopus genome, and five in the zebrafish genome. Based on multiple sequence alignment, three members, ZSWIM5, ZSWIM6, and ZSWIM8, demonstrated the highest homology across all four species. Using available RNA sequencing (RNA-seq) data, ZSWIM genes were found to be widely expressed across different tissues, with distinct tissue-specific properties. To identify the functions of the ZSWIM protein family during embryogenesis, we examined temporal and spatial expression patterns of zswim family genes in Xenopus embryos. Quantitative real-time polymerase chain reaction (qRT-PCR) revealed that each member had a distinct expression profile. Whole-mount in situ hybridization showed that both zswim1 and zswim3 were maternally expressed genes; zswim5 and zswim6 were expressed throughout embryogenesis and displayed dynamic expression in the brain, eyes, somite, and bronchial arch at the late tailbud stages; zswim7 was detected in the eye area; zswim8 showed a dynamic expression pattern during the tailbud stages, with expression detected in the brain, eyes, and somite; zswim9 was faintly expressed throughout embryonic development. This study provides a foundation for future research to delineate the functions of ZSWIM gene members.


Asunto(s)
Evolución Biológica , Pez Cebra , Femenino , Embarazo , Humanos , Animales , Ratones , Pez Cebra/genética , Xenopus/genética , Encéfalo , Dedos de Zinc/genética , Proteínas de Unión al ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...