Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sports Med Open ; 10(1): 28, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38536564

RESUMEN

BACKGROUND: Hormonal doping in recreational sports is a public-health concern. The World Anti-Doping Agency (WADA) promoted the creation of the Athlete Biological Passport, aiming to monitor athlete's biological variables over time to facilitate indirect detection of doping. Detection tests for anabolic androgenic steroids (AAS) and growth hormone (GH) are available while insulin abuse cannot be revealed. We have determined in recreational bodybuilders the metabolic effects associated with different patterns of hormone abuse. All analyses were conducted using Statistical Package for Social Sciences (SPSS) 21.0 software (SPSS Chicago, IL). RESULTS: We have assessed plasma concentrations of selected metabolic markers and fatty acid content in erythrocyte membranes of 92 male bodybuilders and in 45 healthy controls. Hormonal abuse was identified by anonymous questionnaires. 43% (%) of recruited bodybuilders regularly abused hormones, i.e., anabolic androgenic steroids (95%) often associated with GH (30%) and/or insulin (38%). HDL-cholesterol was lower in insulin and/or GH abusers. Alanine (ALT) and aspartic (AST) transaminases were greater in hormone abusing bodybuilders than in non-doping bodybuilders and controls. Insulin doping was selectively associated with increased plasma ALT-to-AST ratio. In erythrocyte membranes, elongase activity (i.e., stearic-to-palmitic ratio) was lower in insulin and/or growth hormone doping, whereas increased Δ-9 desaturase activity (i.e., palmitoleic-to-palmitic ratio) was selectively associated with insulin doping. CONCLUSIONS: In conclusion, our study demonstrates that insulin and GH abuse are characterized by multiple alterations of specific metabolic markers. Although further studies are needed to test whether longitudinal monitoring of selected metabolic marker such as muscle contraction time, HDL levels, ALT-AST ratio as well as the activities of selected enzymes (e.g. Δ-9 desaturase and elongase), could contribute to the detection of insulin and GH abuse in sport.

2.
Artículo en Inglés | MEDLINE | ID: mdl-37754581

RESUMEN

Cardiovascular disease (CVD) is still a leading cause of morbidity and mortality, despite all the progress achieved as regards to both prevention and treatment. Having high levels of lipoprotein(a) [Lp(a)] is a risk factor for cardiovascular disease that operates independently. It can increase the risk of developing cardiovascular disease even when LDL cholesterol (LDL-C) levels are within the recommended range, which is referred to as residual cardiovascular risk. Lp(a) is an LDL-like particle present in human plasma, in which a large plasminogen-like glycoprotein, apolipoprotein(a) [Apo(a)], is covalently bound to Apo B100 via one disulfide bridge. Apo(a) contains one plasminogen-like kringle V structure, a variable number of plasminogen-like kringle IV structures (types 1-10), and one inactive protease region. There is a large inter-individual variation of plasma concentrations of Lp(a), mainly ascribable to genetic variants in the Lp(a) gene: in the general po-pulation, Lp(a) levels can range from <1 mg/dL to >1000 mg/dL. Concentrations also vary between different ethnicities. Lp(a) has been established as one of the risk factors that play an important role in the development of atherosclerotic plaque. Indeed, high concentrations of Lp(a) have been related to a greater risk of ischemic CVD, aortic valve stenosis, and heart failure. The threshold value has been set at 50 mg/dL, but the risk may increase already at levels above 30 mg/dL. Although there is a well-established and strong link between high Lp(a) levels and coronary as well as cerebrovascular disease, the evidence regarding incident peripheral arterial disease and carotid atherosclerosis is not as conclusive. Because lifestyle changes and standard lipid-lowering treatments, such as statins, niacin, and cholesteryl ester transfer protein inhibitors, are not highly effective in reducing Lp(a) levels, there is increased interest in developing new drugs that can address this issue. PCSK9 inhibitors seem to be capable of reducing Lp(a) levels by 25-30%. Mipomersen decreases Lp(a) levels by 25-40%, but its use is burdened with important side effects. At the current time, the most effective and tolerated treatment for patients with a high Lp(a) plasma level is apheresis, while antisense oligonucleotides, small interfering RNAs, and microRNAs, which reduce Lp(a) levels by targeting RNA molecules and regulating gene expression as well as protein production levels, are the most widely explored and promising perspectives. The aim of this review is to provide an update on the current state of the art with regard to Lp(a) pathophysiological mechanisms, focusing on the most effective strategies for lowering Lp(a), including new emerging alternative therapies. The purpose of this manuscript is to improve the management of hyperlipoproteinemia(a) in order to achieve better control of the residual cardiovascular risk, which remains unacceptably high.


Asunto(s)
Enfermedades Cardiovasculares , Lipoproteína(a) , Humanos , Plasminógeno , Proproteína Convertasa 9 , Factores de Riesgo , Serina Proteasas
4.
Chem Commun (Camb) ; (2): 200-1, 2003 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-12585390

RESUMEN

Phenyldimethylsilyllithium reacts with the beta-N,N-dimethylaminoenones 1 and 7, with the enal 5, and with ethyl beta-N,N-dimethylaminoacrylate 9 to give the corresponding alpha,beta-unsaturated carbonyl compounds with a beta-phenyldimethylsilyl group, but in the last case only when the reaction mixture is given a mysteriously brief treatment with methyl iodide before workup.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...