Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Opt Express ; 32(2): 1325-1333, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38297687

RESUMEN

We demonstrate high-harmonic generation for the time-domain observation of the electric field (HHG-TOE) and use it to measure the waveform of ultrashort mid-infrared (MIR) laser pulses interacting with ZnO thin-films or WS2 monolayers. The working principle relies on perturbing HHG in solids with a weak replica of the pump pulse. We measure the duration of few-cycle pulses at 3200 nm, in reasonable agreement with the results of established pulse characterization techniques. Our method provides a straightforward approach to accurately characterize femtosecond laser pulses used for HHG experiments right at the point of interaction.

2.
J Phys Condens Matter ; 36(6)2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-37871597

RESUMEN

Sputtering of metal surfaces can be both a beneficial phenomenon, for instance in the coating industry, or an undesired side-effect, for instant materials subjected to irradiation. While the average sputtering yields are well known in common metals, recent studies have shown that the yields can depend on the crystallographic orientation of the surface much stronger than commonly appreciated. In this study, we investigate by computational means, molecular dynamics, the sputtering of single crystalline Ag surfaces under various incoming energies. The results at low and high energy are compared to experimental results for single crystalline Ag nanocubes of different orientations. We observe strong differences between the sputtering yields of different surface directions and ion energies. We analyze the results in terms of the atom cluster size of the sputtered materials, and show that the cluster size distribution is a key factor to understand the correspondence between simulations and experiments. At low energies mainly single atoms are sputtered, whereas at higher energies the sputtered material is mainly in atom clusters.

3.
Nat Commun ; 14(1): 2719, 2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37169740

RESUMEN

Since Purcell's seminal report 75 years ago, electromagnetic resonators have been used to control light-matter interactions to make brighter radiation sources and unleash unprecedented control over quantum states of light and matter. Indeed, optical resonators such as microcavities and plasmonic antennas offer excellent control but only over a limited spectral range. Strategies to mutually tune and match emission and resonator frequency are often required, which is intricate and precludes the possibility of enhancing multiple transitions simultaneously. In this letter, we report a strong radiative emission rate enhancement of Er3+-ions across the telecommunications C-band in a single plasmonic waveguide based on the Purcell effect. Our gap waveguide uses a reverse nanofocusing approach to efficiently enhance, extract and guide emission from the nanoscale to a photonic waveguide while keeping plasmonic losses at a minimum. Remarkably, the large and broadband Purcell enhancement allows us to resolve Stark-split electric dipole transitions, which are typically only observed under cryogenic conditions. Simultaneous radiative emission enhancement of multiple quantum states is of great interest for photonic quantum networks and on-chip data communications.

4.
Opt Express ; 31(2): 3364-3378, 2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36785331

RESUMEN

Semiconductor nanowire lasers can be subject to modifications of their lasing threshold resulting from a variation of their environment. A promising choice is to use metallic substrates to gain access to low-volume Surface-Plasmon-Polariton (SPP) modes. We introduce a simple, yet quantitatively precise model that can serve to describe mode competition in nanowire lasers on metallic substrates. We show that an aluminum substrate can decrease the lasing threshold for ZnO nanowire lasers while for a silver substrate, the threshold increases compared with a dielectric substrate. Generalizing from these findings, we make predictions describing the interaction between planar metals and semiconductor nanowires, which allow to guide future improvements of highly-integrated laser sources.

5.
Nano Lett ; 22(24): 9914-9919, 2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36480926

RESUMEN

Plasmonic gratings are simple and effective platforms for nonlinear signal generation since they provide a well-defined momentum for photon-plasmon coupling and local hot spots for frequency conversion. Here, a plasmonic azimuthally chirped grating (ACG), which provides spatially resolved broadband momentum for photon-plasmon coupling, was exploited to investigate the plasmonic enhancement effect in two nonlinear optical processes, namely two-photon photoluminescence (TPPL) and second harmonic generation (SHG). The spatial distributions of the nonlinear signals were determined experimentally by hyperspectral mapping with ultrashort pulsed excitation. The experimental spatial distributions of nonlinear signals agree very well with the analytical prediction based on photon-plasmon coupling with the momentum of the ACG, revealing the "antenna" function of the grating in plasmonic nonlinear signal generation. This work highlights the importance of the antenna effect of the gratings for nonlinear signal generation and provides insight into the enhancement mechanism of plasmonic gratings in addition to local hot spot engineering.

6.
Adv Sci (Weinh) ; : e2205304, 2022 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-36403227

RESUMEN

The dynamics of color centers, being a promising quantum technology, is strongly dependent on the local environment. A synergistic approach of X-ray fluorescence analysis and X-ray excited optical luminescence (XEOL) using a hard X-ray nanoprobe is applied. The simultaneous acquisition provides insights into compositional and functional variations at the nanoscale demonstrating the extraordinary capabilities of these combined techniques. The findings on cobalt doped zinc oxide nanowires show an anticorrelation between the band edge emission of the zinc oxide host and the intra-3d cobalt luminescence, indicating two competing recombination paths. Moreover, time-resolved XEOL measurements reveal two exponential decays of the cobalt luminescence. The fast and newly observed one can be attributed to a recombination cascade within the cobalt atom, resulting from direct excitation. Thus, this opens a new fast timescale for potential devices based on cobalt color centers in ZnO nanowires in photonic circuits.

7.
Science ; 376(6599): 1309-1313, 2022 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-35709288

RESUMEN

Erbium-doped fiber amplifiers revolutionized long-haul optical communications and laser technology. Erbium ions could provide a basis for efficient optical amplification in photonic integrated circuits but their use remains impractical as a result of insufficient output power. We demonstrate a photonic integrated circuit-based erbium amplifier reaching 145 milliwatts of output power and more than 30 decibels of small-signal gain-on par with commercial fiber amplifiers and surpassing state-of-the-art III-V heterogeneously integrated semiconductor amplifiers. We apply ion implantation to ultralow-loss silicon nitride (Si3N4) photonic integrated circuits, which are able to increase the soliton microcomb output power by 100 times, achieving power requirements for low-noise photonic microwave generation and wavelength-division multiplexing optical communications. Endowing Si3N4 photonic integrated circuits with gain enables the miniaturization of various fiber-based devices such as high-pulse-energy femtosecond mode-locked lasers.

8.
Nanoscale ; 14(18): 6822-6829, 2022 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-35446325

RESUMEN

Mixed-dimensional hybrid structures have recently gained increasing attention as promising building blocks for novel electronic and optoelectronic devices. In this context, hybridization of semiconductor nanowires with two-dimensional materials could offer new ways to control and modulate lasing at the nanoscale. In this work, we deterministically fabricate hybrid mixed-dimensional heterostructures composed of ZnO nanowires and MoS2 monolayers with micrometer control over their relative position. First, we show that our deterministic fabrication method does not degrade the optical properties of the ZnO nanowires. Second, we demonstrate that the lasing wavelength of ZnO nanowires can be tuned by several nanometers by hybridization with CVD-grown MoS2 monolayers. We assign this spectral shift of the lasing modes to an efficient carrier transfer at the heterointerface and the subsequent increase of the optical band gap in ZnO (Moss-Burstein effect).

9.
Nanotechnology ; 33(3)2021 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-34619667

RESUMEN

Ion irradiation of bulk and thin film materials is tightly connected to well described effects such as sputtering or/and ion beam mixing. However, when a nanoparticle is ion irradiated and the ion range is comparable to the nanoparticle size, these effects are to be reconsidered essentially. This study investigates the morphology changes of silver nanoparticles on top of silicon substrates, being irradiated with Ga+ions in an energy range from 1 to 30 keV. The hemispherical shaped nanoparticles become conical due to an enhanced and curvature-dependent sputtering, before they finally disappear. The sputter yield and morphology changes can be well described by 3D Monte Carlo TRI3DYN simulations. However, the combination of sputtering, ion beam mixing, ion beam induced diffusion, and Ostwald ripening at ion energies lower than 8 keV results in the reappearance of new particles. These newly formed nanoparticles appear in various structures depending on the material and ion energy.

10.
Nanomaterials (Basel) ; 11(1)2020 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-33375116

RESUMEN

The generation of high order harmonics from femtosecond mid-IR laser pulses in ZnO has shown great potential to reveal new insight into the ultrafast electron dynamics on a few femtosecond timescale. In this work we report on the experimental investigation of photoluminescence and high-order harmonic generation (HHG) in a ZnO single crystal and polycrystalline thin film irradiated with intense femtosecond mid-IR laser pulses. The ellipticity dependence of the HHG process is experimentally studied up to the 17th harmonic order for various driving laser wavelengths in the spectral range 3-4 µm. Interband Zener tunneling is found to exhibit a significant excitation efficiency drop for circularly polarized strong-field pump pulses. For higher harmonics with energies larger than the bandgap, the measured ellipticity dependence can be quantitatively described by numerical simulations based on the density matrix equations. The ellipticity dependence of the below and above ZnO band gap harmonics as a function of the laser wavelength provides an efficient method for distinguishing the dominant HHG mechanism for different harmonic orders.

11.
ACS Appl Mater Interfaces ; 12(51): 57117-57123, 2020 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-33306357

RESUMEN

Chalcogenide Cu(In,Ga)Se2 solar cells yield one of the highest efficiencies among all thin-film photovoltaics. However, the variability of the absorber compositions and incorporated alkali elements strongly affect the conversion efficiency. Thus, effective strategies for spatially resolved tracking of the alkali concentration and composition during operation are needed to alleviate this limitation. Here, using a hard X-ray nanoprobe, we apply a synergistic approach of X-ray fluorescence analysis and X-ray beam-induced current techniques under operando conditions. The simultaneous monitoring of both compositional and functional properties in complete solar cells illustrates the exceptional capabilities of this combination of techniques in top-view geometry, where high spatial resolution resulted even underneath the electrical contacts. Our observations reveal Rb agglomerations in selected areas and compositional variations between different grains and their boundaries. The concurrent detection of the functionality exhibits negligible effects on the collection efficiency for Rb-enriched grain boundaries in comparison to their neighboring grains, which indicates the passivation of detrimental defects.

12.
Nano Lett ; 20(12): 8668-8674, 2020 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-33205986

RESUMEN

Scaling information bits to ever smaller dimensions is a dominant drive for information technology (IT). Nanostructured phase change material emerges as a key player in the current green-IT endeavor with low power consumption, functional modularity, and promising scalability. In this work, we present the demonstration of microwave AC voltage induced phase change phenomenon at ∼3 GHz in single Sb2Te3 nanowires. The resistance change by a total of 6-7 orders of magnitude is evidenced by a transition from the crystalline metallic to the amorphous semiconducting phase, which is cross-examined by temperature dependent transport measurement and high-resolution electron microscopy analysis. This discovery could potentially tailor multistate information bit encoding and electrical addressability along a single nanowire, rendering technology advancement for neuro-inspired computing devices.

13.
Nat Commun ; 11(1): 4729, 2020 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-32948756

RESUMEN

Nanowire chip-based electrical and optical devices such as biochemical sensors, physical detectors, or light emitters combine outstanding functionality with a small footprint, reducing expensive material and energy consumption. The core functionality of many nanowire-based devices is embedded in their p-n junctions. To fully unleash their potential, such nanowire-based devices require - besides a high performance - stability and reliability. Here, we report on an axial p-n junction GaAs nanowire X-ray detector that enables ultra-high spatial resolution (~200 nm) compared to micron scale conventional ones. In-operando X-ray analytical techniques based on a focused synchrotron X-ray nanobeam allow probing the internal electrical field and observing hot electron effects at the nanoscale. Finally, we study device stability and find a selective hot electron induced oxidization in the n-doped segment of the p-n junction. Our findings demonstrate capabilities and limitations of p-n junction nanowires, providing insight for further improvement and eventual integration into on-chip devices.

14.
Nat Commun ; 11(1): 1437, 2020 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-32188852

RESUMEN

Laser diodes are efficient light sources. However, state-of-the-art laser diode-based lighting systems rely on light-converting inorganic phosphor materials, which strongly limit the efficiency and lifetime, as well as achievable light output due to energy losses, saturation, thermal degradation, and low irradiance levels. Here, we demonstrate a macroscopically expanded, three-dimensional diffuser composed of interconnected hollow hexagonal boron nitride microtubes with nanoscopic wall-thickness, acting as an artificial solid fog, capable of withstanding ~10 times the irradiance level of remote phosphors. In contrast to phosphors, no light conversion is required as the diffuser relies solely on strong broadband (full visible range) lossless multiple light scattering events, enabled by a highly porous (>99.99%) non-absorbing nanoarchitecture, resulting in efficiencies of ~98%. This can unleash the potential of lasers for high-brightness lighting applications, such as automotive headlights, projection technology or lighting for large spaces.

15.
Nanotechnology ; 31(20): 205705, 2020 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-31995520

RESUMEN

The fabrication of complex nanoscale electronics with reduced dimensions poses challenges on novel techniques to accurately determine fundamental electronic parameters. In this article, we present a universal contactless method based on Raman scattering for measuring the mobility and hole concentration independently in GaAs:Zn and Mn ion-implanted GaAs:Zn nanowires, potentially of great interest for spintronics applications. Clear coupled longitudinal optical phonon-plasmon modes were recorded and fitted with a dielectric function, based on the Drude model, which includes contributions from both plasmons and phonons. From the fitting, we extract accurate values of the plasma frequency and plasma damping constant from which we directly calculate the hole density and mobility, respectively. The extracted mobilities were also used as input data for analysis of complementary four-probe transport measurements, where the corresponding hole concentrations could be calculated and found to be in good agreement with those extracted directly from the Raman data. We also investigated the influence of annealing of the GaAs:Zn nanowires on the hole concentration and mobility and found strong indications of thermally activated defects related to a formed crystalline As/oxide shell around the nanowires. The method proposed here is extremely powerful for the characterization of nanoelectronics in general, and nanospintronics in particular for which Hall measurements are difficult to pursue due to problems related to contact formation, as well as to inherent magnetic properties of the devices.

16.
Nanotechnology ; 31(13): 135604, 2020 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-31825900

RESUMEN

ZnO nanobelts may grow with their polar axis perpendicular to growth direction. Heterostructured nanobelts therefore contain hetero-interfaces along the polar axis of ZnO where polarisation mismatch may induce electron confinement. These interfaces run along the length of the nanobelts. Such heterostructure nanobelts are grown by molecular beam epitaxy and TEM images confirm the core-shell structure. The effects of shell-growth temperature on nano-heterostructures is investigated using photoluminescence and secondary ion mass spectrometry in a focussed ion-beam microscope with Ne+ as the primary ion beam. We perform low temperature photoluminescence on ensembles of such heterostructures and single nanostructures. We show how single nanobelts have photoluminescence spectra rich in features and attribute these to band misalignment at ZnO/ZnMgO interfaces embedded within nano-heterostructures.

17.
Nano Lett ; 19(6): 3563-3568, 2019 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-31117748

RESUMEN

Einstein established the quantum theory of radiation and paved the way for modern laser physics including single-photon absorption by charge carriers and finally pumping an active gain medium into population inversion. This can be easily understood in the particle picture of light. Using intense, ultrashort pulse lasers, multiphoton pumping of an active medium has been realized. In this nonlinear interaction regime, excitation and population inversion depend not only on the photon energy but also on the intensity of the incident pumping light, which can be still described solely by the particle picture of light. We demonstrate here that lowering significantly the pump photon energy further still enables population inversion and lasing in semiconductor nanowires. The extremely high electric field of the pump bends the bands and enables tunneling of electrons from the valence to the conduction band. In this regime, the light acts by the classical Coulomb force and population inversion is entirely due to the wave nature of electrons, thus the excitation becomes independent of the frequency but solely depends on the incident intensity of the pumping light.

18.
Nanotechnology ; 30(33): 335202, 2019 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-31018190

RESUMEN

Recent progress in the realization of magnetic GaAs nanowires (NWs) doped with Mn has attracted a lot of attention due to their potential application in spintronics. In this work, we present a detailed Raman investigation of the structural properties of Zn doped GaAs (GaAs:Zn) and Mn-implanted GaAs:Zn (Ga0.96Mn0.04As:Zn) NWs. A significant broadening and redshift of the optical TO and LO phonon modes are observed for these NWs compared to as-grown undoped wires, which is attributed to strain induced by the Zn/Mn doping and to the presence of implantation-related defects. Moreover, the LO phonon modes are strongly damped, which is interpreted in terms of a strong LO phonon-plasmon coupling, induced by the free hole concentration. Moreover, we report on two new interesting Raman phonon modes (191 and 252 cm-1) observed in Mn ion-implanted NWs, which we attribute to Eg (TO) and A1g (LO) vibrational modes in a sheet layer of crystalline arsenic present on the surface of the NWs. This conclusion is supported by fitting the observed Raman shifts for the SO phonon modes to a theoretical dispersion function for a GaAs NW capped with a dielectric shell.

19.
Nanotechnology ; 30(9): 095201, 2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30540978

RESUMEN

Tunable nanoscale light emitters are essential to accomplish future multifunctional optoelectronic nano-devices. Here, we present an approach for achieving red electroluminescence from single ZnO nanowires (NWs) implanted with europium ions. The electroluminescence is emitted mainly from the end facets of ZnO NWs at room temperature under the application of an AC voltage. The corresponding electroluminescence spectrum is attributed to the radiative intrashell transitions of the Eu ions, while contributions from near band edge or deep level emission of the ZnO remain absent. The total intensity of the electroluminescence is linearly proportional to the length of the NWs, whereas there is no clear correlation with other morphology factors of the NW based device such as the diameter. Furthermore, the underlying excitation mechanism of the electroluminescence is proposed as direct-impact excitation of Eu ions by hot electrons in the ZnO NWs.

20.
Nanotechnology ; 30(6): 065501, 2019 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-30523820

RESUMEN

Novel gas sensors have been realized by decorating clusters of tubular Aerographite with CdTe using magnetron sputtering techniques. Subsequently, individual microtubes were separated and electrically contacted on a SiO2/Si substrate with pre-patterned electrodes. Cathodoluminescence, electron microscopy and electrical characterization prove the successful formation of a polycrystalline CdTe thin film on Aerographite enabling an excellent gas response to ammonia. Furthermore, the dynamical response to ammonia exposure has been investigated, highlighting the quick response and recovery times of the sensor, which is highly beneficial for extremely short on/off cycles. Therefore, this gas sensor reveals a large potential for cheap, highly selective, reliable and low-power gas sensors, which are especially important for hazardous gases such as ammonia.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...