Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Biosci ; 14(1): 50, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38632622

RESUMEN

Ivermectin (IVM) is a commonly prescribed antiparasitic treatment with pharmacological effects on invertebrate glutamate ion channels resulting in paralysis and death of invertebrates. However, it can also act as a modulator of some vertebrate ion channels and has shown promise in facilitating L-DOPA treatment in preclinical models of Parkinson's disease. The pharmacological effects of IVM on dopamine terminal function were tested, focusing on the role of two of IVM's potential targets: purinergic P2X4 and nicotinic acetylcholine receptors. Ivermectin enhanced electrochemical detection of dorsal striatum dopamine release. Although striatal P2X4 receptors were observed, IVM effects on dopamine release were not blocked by P2X4 receptor inactivation. In contrast, IVM attenuated nicotine effects on dopamine release, and antagonizing nicotinic receptors prevented IVM effects on dopamine release. IVM also enhanced striatal cholinergic interneuron firing. L-DOPA enhances dopamine release by increasing vesicular content. L-DOPA and IVM co-application further enhanced release but resulted in a reduction in the ratio between high and low frequency stimulations, suggesting that IVM is enhancing release largely through changes in terminal excitability and not vesicular content. Thus, IVM is increasing striatal dopamine release through enhanced cholinergic activity on dopamine terminals.

2.
Brain Behav Immun ; 113: 145-155, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37453452

RESUMEN

Dopamine transmission from the ventral tegmental area (VTA) to the nucleus accumbens (NAc) regulates important aspects of motivation and is influenced by the neuroimmune system. The neuroimmune system is a complex network of leukocytes, microglia and astrocytes that detect and remove foreign threats like bacteria or viruses and communicate with each other to regulate non-immune (e.g neuronal) cell activity through cytokine signaling. Inflammation is a key regulator of motivational states, though the effects of specific cytokines on VTA circuitry and motivation are largely unknown. Therefore, electrophysiology, neurochemical, immunohistochemical and behavioral studies were performed to determine the effects of the anti-inflammatory cytokine interleukin-10 (IL-10) on mesolimbic activity, dopamine transmission and conditioned behavior. IL-10 enhanced VTA dopamine firing and NAc dopamine levels via decreased VTA GABA currents in dopamine neurons. The IL-10 receptor was localized on VTA dopamine and non-dopamine cells. The IL-10 effects on dopamine neurons required post-synaptic phosphoinositide 3-kinase activity, and IL-10 appeared to have little-to-no efficacy on presynaptic GABA terminals. Intracranial IL-10 enhanced NAc dopamine levels in vivo and produced conditioned place aversion. Together, these studies identify the IL-10R on VTA dopamine neurons as a potential regulator of motivational states.


Asunto(s)
Dopamina , Área Tegmental Ventral , Dopamina/farmacología , Neuronas Dopaminérgicas/fisiología , Interleucina-10/farmacología , Fosfatidilinositol 3-Quinasas , Núcleo Accumbens , Ácido gamma-Aminobutírico/farmacología
3.
Mol Neurobiol ; 60(6): 3113-3129, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36802012

RESUMEN

The prevailing view is that enhancement of dopamine (DA) transmission in the mesolimbic system, consisting of DA neurons in the ventral tegmental area (VTA) that project to the nucleus accumbens (NAc), underlies the reward properties of ethanol (EtOH) and nicotine (NIC). We have shown previously that EtOH and NIC modulation of DA release in the NAc is mediated by α6-containing nicotinic acetylcholine receptors (α6*-nAChRs), that α6*-nAChRs mediate low-dose EtOH effects on VTA GABA neurons and EtOH preference, and that α6*-nAChRs may be a molecular target for low-dose EtOH. However, the most sensitive target for reward-relevant EtOH modulation of mesolimbic DA transmission and the involvement of α6*-nAChRs in the mesolimbic DA reward system remains to be elucidated. The aim of this study was to evaluate EtOH effects on GABAergic modulation of VTA GABA neurons and VTA GABAergic input to cholinergic interneurons (CINs) in the NAc. Low-dose EtOH enhanced GABAergic input to VTA GABA neurons that was blocked by knockdown of α6*-nAChRs. Knockdown was achieved either by α6-miRNA injected into the VTA of VGAT-Cre/GAD67-GFP mice or by superfusion of the α-conotoxin MII[H9A;L15A] (MII). Superfusion of MII blocked EtOH inhibition of mIPSCs in NAc CINs. Concomitantly, EtOH enhanced CIN firing rate, which was blocked by knockdown of α6*-nAChRs with α6-miRNA injected into the VTA of VGAT-Cre/GAD67-GFP mice. The firing rate of CINs was not enhanced by EtOH in EtOH-dependent mice, and low-frequency stimulation (LFS; 1 Hz, 240 pulses) caused inhibitory long-term depression at this synapse (VTA-NAc CIN-iLTD) which was blocked by knockdown of α6*-nAChR and MII. Ethanol inhibition of CIN-mediated evoked DA release in the NAc was blocked by MII. Taken together, these findings suggest that α6*-nAChRs in the VTA-NAc pathway are sensitive to low-dose EtOH and play a role in plasticity associated with chronic EtOH.


Asunto(s)
MicroARNs , Receptores Nicotínicos , Ratones , Animales , Receptores Nicotínicos/metabolismo , Núcleo Accumbens/metabolismo , Nicotina/farmacología , Transmisión Sináptica , Área Tegmental Ventral/metabolismo , Etanol/farmacología , Colinérgicos/farmacología , Interneuronas/metabolismo , MicroARNs/metabolismo
4.
Int J Mol Sci ; 24(3)2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36768252

RESUMEN

Opioid use and withdrawal evokes behavioral adaptations such as drug seeking and anxiety, though the underlying neurocircuitry changes are unknown. The basolateral amygdala (BLA) regulates these behaviors through principal neuron activation. Excitatory BLA pyramidal neuron activity is controlled by feedforward inhibition provided, in part, by lateral paracapsular (LPC) GABAergic inhibitory neurons, residing along the BLA/external capsule border. LPC neurons express µ-opioid receptors (MORs) and are potential targets of opioids in the etiology of opioid-use disorders and anxiety-like behaviors. Here, we investigated the effects of opioid exposure on LPC neuron activity using immunohistochemical and electrophysiological approaches. We show that LPC neurons, and other nearby BLA GABA and non-GABA neurons, express MORs and δ-opioid receptors. Additionally, DAMGO, a selective MOR agonist, reduced GABA but not glutamate-mediated spontaneous postsynaptic currents in LPC neurons. Furthermore, in LPC neurons, abstinence from repeated morphine-exposure in vivo (10 mg/kg/day, 5 days, 2 days off) decrease the intrinsic membrane excitability, with a ~75% increase in afterhyperpolarization and ~40-50% enhanced adenylyl cyclase-dependent activity in LPC neurons. These data show that MORs in the BLA are a highly sensitive targets for opioid-induced inhibition and that repeated opioid exposure results in impaired LPC neuron excitability.


Asunto(s)
Amígdala del Cerebelo , Analgésicos Opioides , Ratas , Animales , Analgésicos Opioides/farmacología , Ratas Sprague-Dawley , Neuronas GABAérgicas , Receptores Opioides
5.
ACS Chem Neurosci ; 13(10): 1534-1548, 2022 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-35482592

RESUMEN

Fast-scan cyclic voltammetry (FSCV) is an effective tool for measuring dopamine release and clearance throughout the brain, especially the striatum where dopamine terminals are abundant and signals are heavily regulated by release machinery and the dopamine transporter (DAT). Peak height measurement is perhaps the most common method for measuring dopamine release, but it is influenced by changes in clearance. Michaelis-Menten-based modeling has been a standard in measuring dopamine clearance, but it is problematic in that it requires experimenter fitted modeling subject to experimenter bias. This study presents the use of the first derivative (velocity) of evoked dopamine signals as an alternative approach for measuring and distinguishing dopamine release from clearance. Maximal upward velocity predicts reductions in dopamine peak height due to D2 and GABAB receptor stimulation and by alterations in calcium concentrations. The Michaelis-Menten maximal velocity (Vmax) measure, an approximation for DAT levels, predicts maximal downward velocity in slices and in vivo. Dopamine peak height and upward velocity were similar between wild-type and DAT knock-out (DATKO) mice. In contrast, downward velocity was lower and exponential decay (tau) was higher in DATKO mice, supporting the use of both measures for extreme changes in DAT activity. In slices, the competitive DAT inhibitors cocaine, PTT, and WF23 increased peak height and upward velocity differentially across increasing concentrations, with PTT and cocaine reducing these measures at high concentrations. Downward velocity and tau values decreased and increased respectively across concentrations, with greater potency and efficacy observed with WF23 and PTT. In vivo recordings demonstrated similar effects of WF23, PTT, and cocaine on measures of release and clearance. Tau was a more sensitive measure at low concentrations, supporting its use as a surrogate for the Michaelis-Menten measure of apparent affinity (Km). Together, these results inform on the use of these various measures for dopamine release and clearance.


Asunto(s)
Cocaína , Dopamina , Animales , Cocaína/farmacología , Cuerpo Estriado/metabolismo , Dopamina/farmacología , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Inhibidores de Captación de Dopamina/farmacología , Ratones , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...