Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 12: 716606, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34539651

RESUMEN

Recent clinical experience has demonstrated that adoptive regulatory T (Treg) cell therapy is a safe and feasible strategy to suppress immunopathology via induction of host tolerance to allo- and autoantigens. However, clinical trials continue to be compromised due to an inability to manufacture a sufficient Treg cell dose. Multipotent adult progenitor cells (MAPCⓇ) promote Treg cell differentiation in vitro, suggesting they may be repurposed to enhance ex vivo expansion of Tregs for adoptive cellular therapy. Here, we use a Good Manufacturing Practice (GMP) compatible Treg expansion platform to demonstrate that MAPC cell-co-cultured Tregs (MulTreg) exhibit a log-fold increase in yield across two independent cohorts, reducing time to target dose by an average of 30%. Enhanced expansion is coupled to a distinct Treg cell-intrinsic transcriptional program characterized by elevated expression of replication-related genes (CDK1, PLK1, CDC20), downregulation of progenitor and lymph node-homing molecules (LEF1 CCR7, SELL) and induction of intestinal and inflammatory tissue migratory markers (ITGA4, CXCR1) consistent with expression of a gut homing (CCR7lo ß7hi) phenotype. Importantly, we find that MulTreg are more readily expanded from patients with autoimmune disease compared to matched Treg lines, suggesting clinical utility in gut and/or T helper type1 (Th1)-driven pathology associated with autoimmunity or transplantation. Relative to expanded Tregs, MulTreg retain equivalent and robust purity, FoxP3 Treg-Specific Demethylated Region (TSDR) demethylation, nominal effector cytokine production and potent suppression of Th1-driven antigen specific and polyclonal responses in vitro and xeno Graft vs Host Disease (xGvHD) in vivo. These data support the use of MAPC cell co-culture in adoptive Treg therapy platforms as a means to rescue expansion failure and reduce the time required to manufacture a stable, potently suppressive product.


Asunto(s)
Autoinmunidad , Recuento de Linfocitos , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Células Madre Adultas/citología , Células Madre Adultas/inmunología , Células Madre Adultas/metabolismo , Animales , Enfermedades Autoinmunes/etiología , Enfermedades Autoinmunes/metabolismo , Enfermedades Autoinmunes/patología , Biomarcadores , Células Cultivadas , Técnicas de Cocultivo , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Femenino , Regulación de la Expresión Génica , Enfermedad Injerto contra Huésped/diagnóstico , Enfermedad Injerto contra Huésped/etiología , Humanos , Inmunofenotipificación , Masculino , Ratones , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo
2.
Sci Rep ; 11(1): 13549, 2021 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-34193955

RESUMEN

Dysregulation of the immune system can initiate chronic inflammatory responses that exacerbate disease pathology. Multipotent adult progenitor cells (MAPC cells), an adult adherent bone-marrow derived stromal cell, have been observed to promote the resolution of uncontrolled inflammatory responses in a variety of clinical conditions including acute ischemic stroke, acute myocardial infarction (AMI), graft vs host disease (GvHD), and acute respiratory distress syndrome (ARDS). One of the proposed mechanisms by which MAPC cells modulate immune responses is via the induction of regulatory T cells (Tregs), however, the mechanism(s) involved remains to be fully elucidated. Herein, we demonstrate that, in an in vitro setting, MAPC cells increase Treg frequencies by promoting Treg proliferation and CD4+ T cell differentiation into Tregs. Moreover, MAPC cell-induced Tregs (miTregs) have a more suppressive phenotype characterized by increased expression of CTLA-4, HLA-DR, and PD-L1 and T cell suppression capacity. MAPC cells also promoted Treg activation by inducing CD45RA+ CD45RO+ transitional Tregs. Additionally, we identify transforming growth factor beta (TGFß) as an essential factor for Treg induction secreted by MAPC cells. Furthermore, inhibition of indoleamine 2, 3-dioxygenase (IDO) resulted in decreased Treg induction by MAPC cells demonstrating IDO involvement. Our studies also show that CD14+ monocytes play a critical role in Treg induction by MAPC cells. Our study describes MAPC cell dependent Treg phenotypic changes and provides evidence of potential mechanisms by which MAPC cells promote Treg differentiation.


Asunto(s)
Células Madre Adultas/inmunología , Tolerancia Inmunológica , Monocitos/inmunología , Células Madre Multipotentes/inmunología , Linfocitos T Reguladores/inmunología , Factor de Crecimiento Transformador beta/inmunología , Humanos
3.
Am J Transplant ; 21(4): 1402-1414, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-32506663

RESUMEN

Ex vivo normothermic machine perfusion (NMP) of donor kidneys prior to transplantation provides a platform for direct delivery of cellular therapeutics to optimize organ quality prior to transplantation. Multipotent Adult Progenitor Cells (MAPC® ) possess potent immunomodulatory properties that could minimize ischemia reperfusion injury. We investigated the potential capability of MAPC cells in kidney NMP. Pairs (5) of human kidneys, from the same donor, were simultaneously perfused for 7 hours. Kidneys were randomly allocated to receive MAPC treatment or control. Serial samples of perfusate, urine, and tissue biopsies were taken for comparison. MAPC-treated kidneys demonstrated improved urine output (P = .009), decreased expression of injury biomarker NGAL (P = .012), improved microvascular perfusion on contrast-enhanced ultrasound (cortex P = .019, medulla P = .001), downregulation of interleukin (IL)-1ß (P = .050), and upregulation of IL-10 (P < .047) and Indolamine-2, 3-dioxygenase (P = .050). A chemotaxis model demonstrated decreased neutrophil recruitment when stimulated with perfusate from MAPC-treated kidneys (P < .001). Immunofluorescence revealed prelabeled MAPC cells in the perivascular space of kidneys during NMP. We report the first successful delivery of cellular therapy to a human kidney during NMP. Kidneys treated with MAPC cells demonstrate improvement in clinically relevant parameters and injury biomarkers. This novel method of cell therapy delivery provides an exciting opportunity to recondition organs prior to transplantation.


Asunto(s)
Trasplante de Riñón , Daño por Reperfusión , Tratamiento Basado en Trasplante de Células y Tejidos , Humanos , Riñón , Trasplante de Riñón/efectos adversos , Preservación de Órganos , Perfusión , Daño por Reperfusión/prevención & control
4.
Front Immunol ; 11: 1226, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32714318

RESUMEN

Background: Pre-clinical research with multi-potent adult progenitor cells (MAPC® cells, Multistem, Athersys Inc., Cleveland, Ohio) suggests their potential as an anti-inflammatory and immunomodulatory therapy in organ transplantation. Normothermic machine perfusion of the liver (NMP-L) has been proposed as a way of introducing therapeutic agents into the donor organ. Delivery of cellular therapy to human donor livers using this technique has not yet been described in the literature. The primary objectives of this study were to develop a technique for delivering cellular therapy to human donor livers using NMP-L and demonstrate engraftment. Methods: Six discarded human livers were perfused for 6 h at 37°C using the Liver Assist (Organ Assist, Groningen). 50 × 106 CMPTX-labeled MAPC cells were infused directly into the right lobe via the hepatic artery (HA, n = 3) or portal vein (PV, n = 3) over 20 min at different time points during the perfusion. Perfusion parameters were recorded and central and peripheral biopsies were taken at multiple time-points from both lobes and subjected to standard histological stains and confocal microscopy. Perfusate was analyzed using a 35-plex multiplex assay and proteomic analysis. Results: There was no detrimental effect on perfusion flow parameters on infusion of MAPC cells by either route. Three out of six livers met established criteria for organ viability. Confocal microscopy demonstrated engraftment of MAPC cells across vascular endothelium when perfused via the artery. 35-plex multiplex analysis of perfusate yielded 13 positive targets, 9 of which appeared to be related to the infusion of MAPC cells (including Interleukin's 1b, 4, 5, 6, 8, 10, MCP-1, GM-CSF, SDF-1a). Proteomic analysis revealed 295 unique proteins in the perfusate from time-points following the infusion of cellular therapy, many of which have strong links to MAPC cells and mesenchymal stem cells in the literature. Functional enrichment analysis demonstrated their immunomodulatory potential. Conclusion: We have demonstrated that cells can be delivered directly to the target organ, prior to host immune cell population exposure and without compromising the perfusion. Transendothelial migration occurs following arterial infusion. MAPC cells appear to secrete a host of soluble factors that would have anti-inflammatory and immunomodulatory benefits in a human model of liver transplantation.


Asunto(s)
Células Madre Adultas , Trasplante de Hígado , Donadores Vivos , Trasplante de Células Madre , Células Madre Adultas/citología , Células Madre Adultas/metabolismo , Biomarcadores , Tratamiento Basado en Trasplante de Células y Tejidos , Quimiocinas/metabolismo , Terapia Combinada , Citocinas/metabolismo , Técnica del Anticuerpo Fluorescente , Humanos , Inmunohistoquímica , Inmunofenotipificación , Inmunoterapia , Trasplante de Hígado/métodos , Preservación de Órganos/métodos , Perfusión , Proteoma , Trasplante de Células Madre/métodos
5.
Stem Cell Res Ther ; 8(1): 159, 2017 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-28676074

RESUMEN

BACKGROUND: Primary graft dysfunction (PGD) is considered to be the end result of an inflammatory response targeting the new lung allograft after transplant. Previous research has indicated that MAPC cell therapy might attenuate this injury by its paracrine effects on the pro-/anti-inflammatory balance. This study aims to investigate the immunoregulatory capacities of MAPC cells in PGD when administered in the airways. METHODS: Lungs of domestic pigs (n = 6/group) were subjected to 90 minutes of warm ischemia. Lungs were cold flushed, cannulated on ice and placed on EVLP for 6 hours. At the start of EVLP, 40 ml of an albumin-plasmalyte mixture was distributed in the airways (CONTR group). In the MAPC cell group, 150 million MAPC cells (ReGenesys/Athersys, Cleveland, OH, USA) were added to this mixture. At the end of EVLP, a physiological evaluation (pulmonary vascular resistance, lung compliance, PaO2/FiO2), wet-to-dry weight ratio (W/D) sampling and a multiplex analysis of bronchoalveolar lavage (BAL) (2 × 30 ml) was performed. RESULTS: Pulmonary vascular resistance, lung compliance, PaO2/FiO2 and W/D were not statistically different at the end of EVLP between both groups. BAL neutrophilia was significantly reduced in the MAPC cell group. Moreover, there was a significant decrease in TNF-α, IL-1ß and IFN-γ in the BAL, but not in IFN-α; whereas IL-4, IL-10 and IL-8 were below the detection limit. CONCLUSIONS: Although no physiologic effect of MAPC cell distribution in the airways was detected during EVLP, we observed a reduction in pro-inflammatory cytokines and neutrophils in BAL in the MAPC cell group. This effect on the innate immune system might play an important role in critically modifying the process of PGD after transplantation. Further experiments will have to elucidate the immunoregulatory effect of MAPC cell administration on graft function after transplantation.


Asunto(s)
Células Madre Adultas/inmunología , Inmunomodulación , Trasplante de Pulmón , Pulmón/inmunología , Disfunción Primaria del Injerto/inmunología , Isquemia Tibia , Células Madre Adultas/patología , Animales , Citocinas/inmunología , Pulmón/patología , Perfusión , Disfunción Primaria del Injerto/patología , Porcinos
6.
Cytotherapy ; 19(6): 744-755, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28499585

RESUMEN

BACKGROUND AIMS: Myelodysplastic syndromes (MDS) are a group of clonal stem cell disorders affecting the normal hematopoietic differentiation process and leading to abnormal maturation and differentiation of all blood cell lineages. Treatment options are limited, and there is an unmet medical need for effective therapies for patients with severe cytopenias. METHODS: We demonstrate that multipotent adult progenitor cells (MAPC) improve the function of hematopoietic progenitors derived from human MDS bone marrow (BM) by significantly increasing the frequency of primitive progenitors as well as the number of myeloid colonies. RESULTS: This effect was more pronounced in a non-contact culture, indicating the importance of soluble factors produced by the MAPC cells. Moreover, the cells did not stimulate the growth of the abnormal MDS clone, as shown by fluorescent in situ hybridization analysis on BM cells from patients with a known genetic abnormality. We also demonstrate that MAPC cells can provide stromal support for patient-derived hematopoietic cells. When MAPC cells were intravenously injected into a mouse model of MDS, they migrated to the site of injury and increased the hematopoietic function in diseased mice. DISCUSSION: The preclinical studies undertaken here indicate an initial proof of concept for the use of MAPC cell therapy in patients with MDS-related severe and symptomatic cytopenias and should pave the way for further investigation in clinical trials.


Asunto(s)
Células Madre Multipotentes/trasplante , Síndromes Mielodisplásicos/terapia , Adulto , Animales , Células de la Médula Ósea/citología , Diferenciación Celular , Femenino , Hematopoyesis , Humanos , Hibridación Fluorescente in Situ , Ratones Endogámicos C57BL
7.
Stem Cells Transl Med ; 5(12): 1607-1619, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27465071

RESUMEN

: MultiStem cells are clinical-grade multipotent adult bone marrow-derived progenitor cells (MAPCs), with extensive replication potential and broader differentiation capacity compared with mesenchymal stem cells. Human MAPCs suppress T-cell proliferation induced by alloantigens and mutually interact with allogeneic natural killer cells. In this study, the interaction between MultiStem and CD8+ cytotoxic T lymphocytes (CTLs) was addressed for the first time. In an in vitro setting, the immunogenicity of MultiStem, the susceptibility of MultiStem toward CTL-mediated lysis, and its effects on CTL function were investigated. MultiStem was nonimmunogenic for alloreactive CTL induction and was-even after major histocompatibility complex class I upregulation-insensitive to alloantigen-specific CTL-mediated lysis. Furthermore, MultiStem reduced CTL proliferation and significantly decreased perforin expression during the T-cell activation phase. As a consequence, MultiStem dose-dependently impaired the induction of CTL function. These effects of MultiStem were mediated predominantly through contact-dependent mechanisms. Moreover, MultiStem cells considerably influenced the expression of T-cell activation markers CD25, CD69, and human leukocyte antigen-DR. The MultiStem-induced CD8-CD69+ T-cell population displayed a suppressive effect on the induction of CTL function during a subsequent mixed-lymphocyte culture. Finally, the killer activity of activated antigen-specific CTLs during their cytolytic effector phase was also diminished in the presence of MultiStem. This study confirms that these clinical-grade MAPCs are an immune-modulating population that inhibits CTL activation and effector responses and are, consequently, a highly valuable cell population for adoptive immunosuppressive therapy in diseases where damage is induced by CTLs. SIGNIFICANCE: Because multipotent adult progenitor cells (MAPCs) are among the noteworthy adult mesenchymal stem cell populations for immune therapy and have the advantage over mesenchymal stem cells (MSCs) of large-scale manufacturing and banking potential and thus prompt availability, it is important to understand how MAPCs interact with immune cells to validate their widespread therapeutic applicability. Cytotoxic immune effector cells play a crucial role in immune homeostasis and in the pathogenesis of some autoimmune diseases. This study assessed for the first time the in vitro influence of a clinical-grade human MAPC product (MultiStem) on the cytotoxic function of CD8+ T cells (CTLs) by evaluating the immunogenicity of MAPCs and the susceptibility of MAPCs toward CTL-mediated lysis and by analyzing the mechanism of MAPC-mediated modulation of CTL functionality. These results may represent a highly relevant contribution to the current knowledge and, in combination with the results of future phase II/III trials using MultiStem, could lead to an intriguing continuation of stem cell-based research for immunotherapy.


Asunto(s)
Células Madre Adultas/citología , Células Madre Multipotentes/citología , Linfocitos T Citotóxicos/citología , Adulto , Células Madre Adultas/metabolismo , Antígenos CD/metabolismo , Antígenos de Diferenciación de Linfocitos T/metabolismo , Biomarcadores/metabolismo , Comunicación Celular , Proliferación Celular , Citotoxicidad Inmunológica , Galectina 1/metabolismo , Humanos , Isoantígenos/metabolismo , Lectinas Tipo C/metabolismo , Activación de Linfocitos , Células Madre Multipotentes/metabolismo , Perforina/metabolismo , Linfocitos T Citotóxicos/metabolismo
8.
Stem Cells ; 34(7): 1971-84, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26992046

RESUMEN

Transplantation of mesenchymal stem cells (MSCs) into injured or diseased tissue-for the in situ delivery of a wide variety of MSC-secreted therapeutic proteins-is an emerging approach for the modulation of the clinical course of several diseases and traumata. From an emergency point-of-view, allogeneic MSCs have numerous advantages over patient-specific autologous MSCs since "off-the-shelf" cell preparations could be readily available for instant therapeutic intervention following acute injury. Although we confirmed the in vitro immunomodulatory capacity of allogeneic MSCs on antigen-presenting cells with standard coculture experiments, allogeneic MSC grafts were irrevocably rejected by the host's immune system upon either intramuscular or intracerebral transplantation. In an attempt to modulate MSC allograft rejection in vivo, we transduced MSCs with an interleukin-13 (IL13)-expressing lentiviral vector. Our data clearly indicate that prolonged survival of IL13-expressing allogeneic MSC grafts in muscle tissue coincided with the induction of an alternatively activated macrophage phenotype in vivo and a reduced number of alloantigen-reactive IFNγ- and/or IL2-producing CD8(+) T cells compared to nonmodified allografts. Similarly, intracerebral IL13-expressing MSC allografts also exhibited prolonged survival and induction of an alternatively activated macrophage phenotype, although a peripheral T cell component was absent. In summary, this study demonstrates that both innate and adaptive immune responses are effectively modulated in vivo by locally secreted IL13, ultimately resulting in prolonged MSC allograft survival in both muscle and brain tissue. Stem Cells 2016;34:1971-1984.


Asunto(s)
Supervivencia de Injerto/inmunología , Interleucina-13/farmacología , Isoantígenos/inmunología , Activación de Linfocitos/efectos de los fármacos , Macrófagos/metabolismo , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/citología , Linfocitos T/inmunología , Aloinjertos/efectos de los fármacos , Aloinjertos/inmunología , Animales , Formación de Anticuerpos/efectos de los fármacos , Células Presentadoras de Antígenos/efectos de los fármacos , Células Dendríticas/citología , Células Dendríticas/efectos de los fármacos , Ingeniería Genética , Inmunomodulación/efectos de los fármacos , Activación de Macrófagos/efectos de los fármacos , Macrófagos/efectos de los fármacos , Ratones , Microglía/efectos de los fármacos , Microglía/patología , Linfocitos T/efectos de los fármacos
9.
Stem Cells Int ; 2016: 4095072, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26880961

RESUMEN

Tumor infiltrating stem cells have been suggested as a vehicle for the delivery of a suicide gene towards otherwise difficult to treat tumors like glioma. We have used herpes simplex virus thymidine kinase expressing human multipotent adult progenitor cells in two brain tumor models (hU87 and Hs683) in immune-compromised mice. In order to determine the best time point for the administration of the codrug ganciclovir, the stem cell distribution and viability were monitored in vivo using bioluminescence (BLI) and magnetic resonance imaging (MRI). Treatment was assessed by in vivo BLI and MRI of the tumors. We were able to show that suicide gene therapy using HSV-tk expressing stem cells can be followed in vivo by MRI and BLI. This has the advantage that (1) outliers can be detected earlier, (2) GCV treatment can be initiated based on stem cell distribution rather than on empirical time points, and (3) a more thorough follow-up can be provided prior to and after treatment of these animals. In contrast to rodent stem cell and tumor models, treatment success was limited in our model using human cell lines. This was most likely due to the lack of immune components in the immune-compromised rodents.

10.
Stem Cells Transl Med ; 4(12): 1436-49, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26494783

RESUMEN

UNLABELLED: Multipotent adult progenitor cells (MAPCs) are adult adherent stromal stem cells currently being assessed in clinical trials for acute graft versus host disease with demonstrated immunomodulatory capabilities and the potential to ameliorate detrimental autoimmune and inflammation-related processes. Anti-CD3/anti-CD28 (3/28) activation of T cells within the peripheral blood mononuclear cell (PBMC) compartment was performed in the presence or absence of MAPCs. Liquid chromatography-coupled tandem mass spectrometry was used to characterize the differential secretion of proteins, and transcriptional profiling was used to monitor mRNA expression changes in both cell populations. Overall, 239 secreted and/or ectodomain-shed proteins were detected in the secretomes of PBMCs and MAPCs. In addition, 3/28 activation of PBMCs induced differential expression of 2,925 genes, and 22% of these transcripts were differentially expressed on exposure to MAPCs in Transwell. MAPCs exposed to 3/28-activated PBMCs showed differential expression of 1,247 MAPC genes. Crosstalk was demonstrated by reciprocal transcriptional regulation. Secretome proteins and transcriptional signatures were used to predict molecular activities by which MAPCs could dampen local and systemic inflammatory responses. These data support the hypothesis that MAPCs block PBMC proliferation via cell cycle arrest coupled to metabolic stress in the form of tryptophan depletion, resulting in GCN2 kinase activation, downstream signaling, and inhibition of cyclin D1 translation. These data also provide a plausible explanation for the immune privilege reported with administration of donor MAPCs. Although most components of the major histocompatibility complex class II antigen presentation pathway were markedly transcriptionally upregulated, cell surface expression of human leukocyte antigen-DR is minimal on MAPCs exposed to 3/28-activated PBMCs. SIGNIFICANCE: This study documents experiments quantifying solution-phase crosstalk between multipotent adult progenitor cells (MAPCs) and peripheral blood mononuclear cells. The secretome and transcriptional changes quantified suggest mechanisms by which MAPCs are hypothesized to provide both local and systemic immunoregulation of inflammation. The potential impact of these studies includes development of a robust experimental framework to be used for preclinical evaluation of the specific mechanisms by which beneficial effects are obtained after treatment of patients with MAPCs.


Asunto(s)
Células Madre Adultas/metabolismo , Comunicación Celular , Regulación de la Expresión Génica , Leucocitos Mononucleares/metabolismo , Células Madre Multipotentes/metabolismo , Adulto , Células Madre Adultas/citología , Técnicas de Cocultivo , Femenino , Humanos , Leucocitos Mononucleares/citología , Masculino , Células Madre Multipotentes/citología
11.
Stem Cells ; 32(11): 2833-44, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25142614

RESUMEN

Adult stem cells have been investigated increasingly over the past years for multiple applications. Although they have a more favorable safety profile compared to pluripotent stem cells, they are still capable of self-renewal and differentiate into several cell types. We investigated the behavior of Oct4-positive (Oct4(+)) and Oct4-negative (Oct4(-) ) murine or rat bone marrow (BM)-derived stem cells in the healthy brain of syngeneic mice and rats. Engraftment of mouse and rat Oct4-positive BM-derived hypoblast-like stem cells (m/rOct4(+) BM-HypoSCs) resulted in yolk-sac tumor formation in the healthy brain which was monitored longitudinally using magnetic resonance imaging (MRI) and bioluminescence imaging (BLI). Contrast enhanced MRI confirmed the disruption of the blood brain barrier. In contrast, m/r Oct4-negative BM-derived multipotent adult progenitor cells (m/rOct4(-) BM-MAPCs) did not result in mass formation after engraftment into the brain. mOct4(+) BM-HypoSCs and mOct4(-) BM-MAPCs were transduced to express enhanced green fluorescent protein, firefly luciferase (fLuc), and herpes simplex virus-thymidine kinase to follow up suicide gene expression as a potential "safety switch" for tumor-forming stem cells by multimodal imaging. Both cell lines were eradicated efficiently in vivo by ganciclovir administration indicating successful suicide gene expression in vivo, as assessed by MRI, BLI, and histology. The use of suicide genes to prevent tumor formation is in particular of interest for therapeutic approaches where stem cells are used as vehicles to deliver therapeutic genes.


Asunto(s)
Ganciclovir/metabolismo , Células Madre/citología , Animales , Encéfalo/metabolismo , Línea Celular , Proteínas Fluorescentes Verdes/metabolismo , Luciferasas de Luciérnaga/metabolismo , Imagen por Resonancia Magnética , Ratones , Modelos Animales , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Conejos , Ratas
12.
Cell Transplant ; 23(9): 1099-110, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-23562064

RESUMEN

Human multipotent adult progenitor cells (hMAPCs) are isolated from bone marrow with a more extensive expansion capacity compared to human mesenchymal stem cells (hMSCs) and with the ability to differentiate into endothelium. Like hMSCs, hMAPCs inhibit T-cell proliferation induced by alloantigens. In this study, we tested the interaction between hMAPCs and natural killer (NK) cells. We assessed the susceptibility of hMAPCs to NK cell-mediated lysis and the immunomodulation of hMAPCs on NK cell function during IL-2-driven stimulation and the cytolytic effector phase. Human MAPCs express the ligands PVR and ULBP-2/5/6, which are recognized by activating NK cell receptors. However, they also express MHC class I molecules, which induce inhibitory signals in NK cells. Freshly isolated NK cells at different effector:target ratios did not kill hMAPCs as assessed by an MTT and (51)Cr-release assay, while hMAPCs impaired the cytotoxic activity of resting NK cells against the NK-sensitive K562 leukemia cell line. By contrast, IL-2-stimulated NK cells were capable of killing hMAPCs, and preactivated NK cells were not influenced during their cytotoxic effector function against K562 cells by hMAPCs. When added during the 6-day preactivation phase with IL-2, hMAPCs dose-dependently reduced NK cell proliferation in an IDO-dependent manner, but they did not influence the induction of cytotoxic capacity by IL-2. This study indicates that human MAPCs mutually interact with NK cells.


Asunto(s)
Células Asesinas Naturales/inmunología , Células Madre Multipotentes/citología , Adolescente , Adulto , Células de la Médula Ósea/citología , Proliferación Celular , Células Cultivadas , Niño , Preescolar , Técnicas de Cocultivo , Femenino , Antígenos de Histocompatibilidad Clase I/inmunología , Humanos , Interferón gamma/genética , Interferón gamma/metabolismo , Interferón gamma/farmacología , Interleucina-2/genética , Interleucina-2/metabolismo , Interleucina-2/farmacología , Células K562 , Células Asesinas Naturales/efectos de los fármacos , Células Asesinas Naturales/metabolismo , Leucocitos Mononucleares/citología , Ligandos , Activación de Linfocitos/inmunología , Masculino , Células Madre Multipotentes/efectos de los fármacos , Células Madre Multipotentes/metabolismo , Subfamilia K de Receptores Similares a Lectina de Células NK/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacología
13.
Immunol Cell Biol ; 91(1): 32-9, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23295415

RESUMEN

Somatic, also termed adult, stem cells are highly attractive biomedical cell candidates because of their extensive replication potential and functional multilineage differentiation capacity. They can be used for drug and toxicity screenings in preclinical studies, as in vitro model to study differentiation or for regenerative medicine to aid in the repair of tissues or replace tissues that are lost upon disease, injury or ageing. Multipotent adult progenitor cells (MAPCs) and mesenchymal stem cells (MSCs) are two types of adult stem cells derived from bone marrow that are currently being used clinically for tissue regeneration and for their immunomodulatory and trophic effects. This review will give an overview of the phenotypic and functional differences between human MAPCs and MSCs, with a strong emphasis on their immunological characteristics. Finally, we will discuss the clinical studies in which MSCs and MAPCs are already used.


Asunto(s)
Células Madre Adultas/citología , Células Madre Adultas/inmunología , Células de la Médula Ósea/citología , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/inmunología , Envejecimiento/inmunología , Células de la Médula Ósea/inmunología , Diferenciación Celular/inmunología , Humanos , Medicina Regenerativa/métodos
14.
Cell Transplant ; 22(10): 1915-28, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23031260

RESUMEN

Multipotent adult progenitor cells (MAPCs) are bone marrow-derived nonhematopoietic stem cells with a broad differentiation potential and extensive expansion capacity. A comparative study between human mesenchymal stem cells (hMSCs) and human MAPCs (hMAPCs) has shown that hMAPCs have clearly distinct phenotypical and functional characteristics from hMSCs. In particular, hMAPCs express lower levels of MHC class I than hMSCs and cannot only differentiate into typical mesenchymal cell types but can also differentiate in vitro and in vivo into functional endothelial cells. The use of hMSCs as cellular immunomodulatory stem cell products gained much interest since their immunomodulatory capacities in vitro became evident over the last decade. Currently, the clinical grade stem cell product of hMAPCs is already used in clinical trials to prevent graft-versus-host disease (GVHD), as well as for the treatment of acute myocardial infarct, ischemic stroke, and Crohn's disease. Therefore, we studied the immune phenotype, immunogenicity, and immunosuppressive effect of hMAPCs in vitro. We demonstrated that hMAPCs are nonimmunogenic for T-cell proliferation and cytokine production. In addition, hMAPCs exert strong immunosuppressive effects on T-cell alloreactivity and on T-cell proliferation induced by mitogens and recall antigens. This immunomodulatory effect was not MHC restricted, which makes off-the-shelf use promising. The immunosuppressive effect of hMAPCs is partially mediated via soluble factors and dependent on indoleamine 2,3-dioxygenase (IDO) activity. At last, we isolated hMAPCs, the clinical grade stem cell product of hMAPCs, named MultiStem, and hMSCs from one single donor and observed that both the immunogenicity and the immunosuppressive capacities of all three stem cell products are comparable in vitro. In conclusion, hMAPCs have potent immunomodulatory properties in vitro and can serve as a valuable cell source for the clinical use of immunomodulatory cellular stem cell product.


Asunto(s)
Células Madre Multipotentes/inmunología , Linfocitos T/inmunología , Adulto , Aloinjertos , Células de la Médula Ósea/citología , Proliferación Celular , Células Cultivadas , Niño , Citocinas/metabolismo , Femenino , Humanos , Inmunofenotipificación , Terapia de Inmunosupresión , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Quinurenina/metabolismo , Masculino , Persona de Mediana Edad , Células Madre Multipotentes/citología , Linfocitos T/citología , Linfocitos T/metabolismo
15.
PLoS One ; 7(8): e43683, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22952736

RESUMEN

Stroke represents an attractive target for stem cell therapy. Although different types of cells have been employed in animal models, a direct comparison between cell sources has not been performed. The aim of our study was to assess the effect of human multipotent adult progenitor cells (hMAPCs) and human mesenchymal stem cells (hMSCs) on endogenous neurogenesis, angiogenesis and inflammation following stroke. BALB/Ca-RAG 2(-/-) γC(-/-) mice subjected to FeCl(3) thrombosis mediated stroke were intracranially injected with 2 × 10(5) hMAPCs or hMSCs 2 days after stroke and followed for up to 28 days. We could not detect long-term engraftment of either cell population. However, in comparison with PBS-treated animals, hMSC and hMAPC grafted animals demonstrated significantly decreased loss of brain tissue. This was associated with increased angiogenesis, diminished inflammation and a glial-scar inhibitory effect. Moreover, enhanced proliferation of cells in the subventricular zone (SVZ) and survival of newly generated neuroblasts was observed. Interestingly, these neuroprotective effects were more pronounced in the group of animals treated with hMAPCs in comparison with hMSCs. Our results establish cell therapy with hMAPCs and hMSCs as a promising strategy for the treatment of stroke.


Asunto(s)
Células Madre Adultas/trasplante , Trasplante de Células Madre Mesenquimatosas , Células Madre Multipotentes/trasplante , Accidente Cerebrovascular/terapia , Células Madre Adultas/citología , Animales , Encéfalo/irrigación sanguínea , Encéfalo/patología , Movimiento Celular , Supervivencia Celular , Humanos , Infarto de la Arteria Cerebral Media/patología , Infarto de la Arteria Cerebral Media/fisiopatología , Infarto de la Arteria Cerebral Media/cirugía , Infarto de la Arteria Cerebral Media/terapia , Masculino , Ratones , Células Madre Multipotentes/citología , Neovascularización Fisiológica , Accidente Cerebrovascular/patología , Accidente Cerebrovascular/fisiopatología , Accidente Cerebrovascular/cirugía
17.
Stem Cells Dev ; 21(9): 1466-77, 2012 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-22280094

RESUMEN

Mucopolysaccharidosis type I (MPS IH; Hurler syndrome) is a rare genetic disorder that is caused by mutations in the α-L-iduronidase (IDUA) gene, resulting in the deficiency of IDUA enzyme activity and intra-cellular accumulation of glycosaminoglycans. A characteristic skeletal phenotype is one of the many clinical manifestations in Hurler disease. Since the mechanism(s) underlying these skeletal defects are not completely understood, and bone and cartilage are mesenchymal lineages, we focused on the characterization of mesenchymal cells isolated from the bone marrow (BM) of 5 Hurler patients. IDUA-mutated BM stromal cells (BMSC) derived from MPS IH patients exhibited decreased IDUA activity, consistent with the disease genotype. The expansion rate, phenotype, telomerase activity, and differentiation capacity toward adipocytes, osteoblasts, chondrocytes, and smooth muscle cells in vitro of the MPS I BMSC lines were similar to those of BMSC from age-matched normal control donors. MPS I BMSC also had a similar in vivo osteogenic capacity as normal BMSC. However, MPS I BMSC displayed an increased capacity to support osteoclastogenesis, which may correlate with the up-regulation of the RANKL/RANK/OPG molecular pathway in MPS I BMSC compared with normal BMSC.


Asunto(s)
Células de la Médula Ósea/metabolismo , Células de la Médula Ósea/patología , Diferenciación Celular , Mucopolisacaridosis I/metabolismo , Mucopolisacaridosis I/patología , Osteoclastos/metabolismo , Osteoclastos/patología , Adipocitos/metabolismo , Adipocitos/patología , Niño , Femenino , Humanos , Iduronidasa/genética , Iduronidasa/metabolismo , Lactante , Masculino , Mucopolisacaridosis I/genética , Osteoblastos/metabolismo , Osteoblastos/patología , Ligando RANK/genética , Ligando RANK/metabolismo , Receptor Activador del Factor Nuclear kappa-B/genética , Receptor Activador del Factor Nuclear kappa-B/metabolismo , Células del Estroma/metabolismo , Células del Estroma/patología
18.
Immunol Lett ; 137(1-2): 78-81, 2011 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-21382417

RESUMEN

Multipotent adult progenitor cells (MAPC) are clinically being explored as an alternative to mesenchymal stem cells (MSC) for the immunomodulatory control of graft-versus-host disease (GvHD). Here, we performed an explorative study of the immunomodulatory potential of mouse MAPC (mMAPC), in comparison with that of MSC (mMSC) using experimental models of T-cell alloreactivity. Suppressive effects of Oct4-expressing mMAPC have been described previously; here, we studied mMAPC expressing low to no Oct4 ('mClone-3'), recently shown to be most representative for the human MAPC counterpart. mClone-3 and mMSC exhibited similar immunophenotype and in vitro immunogenic behavior. Allogeneic T-cell↔dendritic cell-proliferation assays showed strong dose-dependent T-cell-suppressive effects of both mClone-3 and mMSC. In a popliteal lymph node assay, mClone-3 and mMSC equally suppressed in vivo alloreactive T-cell expansion. We conclude that mouse MAPC and MSC exhibit similar immunosuppressive behavior in in vitro and local in vivo GvHD assays.


Asunto(s)
Células Madre Adultas/inmunología , Terapia de Inmunosupresión , Células Madre Pluripotentes/inmunología , Trasplante de Células Madre , Linfocitos T/metabolismo , Células Madre Adultas/trasplante , Animales , Proliferación Celular , Células Cultivadas , Técnicas de Cocultivo , Modelos Animales de Enfermedad , Enfermedad Injerto contra Huésped/inmunología , Enfermedad Injerto contra Huésped/terapia , Humanos , Inmunidad Celular , Isoantígenos/inmunología , Células Madre Mesenquimatosas/inmunología , Ratones , Ratones Endogámicos C57BL , Factor 3 de Transcripción de Unión a Octámeros/biosíntesis , Células Madre Pluripotentes/trasplante , Linfocitos T/inmunología , Linfocitos T/patología
19.
Stem Cells ; 29(5): 871-82, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21433224

RESUMEN

Several adherent postnatal stem cells have been described with different phenotypic and functional properties. As many of these cells are being considered for clinical therapies, it is of great importance that the identity and potency of these products is validated. We compared the phenotype and functional characteristics of human mesenchymal stem cells (hMSCs), human mesoangioblasts (hMab), and human multipotent adult progenitor cells (hMAPCs) using uniform standardized methods. Human MAPCs could be expanded significantly longer in culture. Differences in cell surface marker expression were found among the three cell populations with CD140b being a distinctive marker among the three cell types. Differentiation capacity towards adipocytes, osteoblasts, chondrocytes, and smooth muscle cells in vitro, using established protocols, was similar among the three cell types. However, only hMab differentiated to skeletal myocytes, while only hMAPCs differentiated to endothelium in vitro and in vivo. A comparative transcriptome analysis confirmed that the three cell populations are distinct and revealed gene signatures that correlated with their specific functional properties. Furthermore, we assessed whether the phenotypic, functional, and transcriptome features were mediated by the culture conditions. Human MSCs and hMab cultured under MAPC conditions became capable of generating endothelial-like cells, whereas hMab lost some of their ability to generate myotubes. By contrast, hMAPCs cultured under MSC conditions lost their endothelial differentiation capacity, whereas this was retained when cultured under Mab conditions, however, myogenic capacity was not gained under Mab conditions. These studies demonstrate that hMSCs, hMab, and hMAPCs have different properties that are partially mediated by the culture conditions.


Asunto(s)
Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Células Madre/citología , Células Madre/metabolismo , Adipocitos/citología , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Línea Celular , Células Cultivadas , Condrocitos/citología , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Perfilación de la Expresión Génica , Humanos , Miocitos del Músculo Liso/citología , Osteoblastos/citología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
20.
Stem Cells ; 29(4): 583-9, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21305670

RESUMEN

Although Gurdon demonstrated already in 1958 that the nucleus of intestinal epithelial cells could be reprogrammed to give rise to adult frogs, the field of cellular reprogramming has only recently come of age with the description by Takahashi and Yamanaka in 2006, which defined transcription factors can reprogram fibroblasts to an embryonic stem cell-like fate. With the mounting interest in the use of human pluripotent stem cells and culture-expanded somatic stem/progenitor cells, such as mesenchymal stem cells, increasing attention has been given to the effect of changes in the in vitro microenvironment on the fate of stem cells. These studies have demonstrated that changes in culture conditions may change the potency of pluripotent stem cells or reprogram adult stem/progenitor cells to endow them with a broader differentiation potential. The mechanisms underlying these fate and potency changes by ex vivo culture should be further investigated and considered when designing clinical therapies with stem/progenitor cells.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Linaje de la Célula , Reprogramación Celular , Células Madre/citología , Animales , Diferenciación Celular , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...