Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Appl Environ Microbiol ; 89(6): e0033823, 2023 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-37377428

RESUMEN

Phosphonate natural products are renowned for inhibitory activities which underly their development as antibiotics and pesticides. Although most phosphonate natural products have been isolated from Streptomyces, bioinformatic surveys suggest that many other bacterial genera are replete with similar biosynthetic potential. While mining actinobacterial genomes, we encountered a contaminated Mycobacteroides data set which included a biosynthetic gene cluster predicted to produce novel phosphonate compounds. Sequence deconvolution revealed that the contig containing this cluster, as well as many others, belonged to a contaminating Bacillus and is broadly conserved among multiple species, including the epiphyte Bacillus velezensis. Isolation and structure elucidation revealed a new di- and tripeptide composed of l-alanine and a C-terminal l-phosphonoalanine which we name phosphonoalamides E and F. These compounds exhibit broad-spectrum antibacterial activity, including strong inhibition against the agricultural pests responsible for vegetable soft rot (Erwinia rhapontici), onion rot (Pantoea ananatis), and American foulbrood (Paenibacillus larvae). This work expands our knowledge of phosphonate metabolism and underscores the importance of including underexplored microbial taxa in natural product discovery. IMPORTANCE Phosphonate natural products produced by bacteria have been a rich source of clinical antibiotics and commercial pesticides. Here, we describe the discovery of two new phosphonopeptides produced by B. velezensis with antibacterial activity against human and plant pathogens, including those responsible for widespread soft rot in crops and American foulbrood. Our results provide new insight on the natural chemical diversity of phosphonates and suggest that these compounds could be developed as effective antibiotics for use in medicine or agriculture.


Asunto(s)
Antiinfecciosos , Bacillus , Productos Biológicos , Organofosfonatos , Plaguicidas , Humanos , Productos Biológicos/química , Bacillus/genética , Bacillus/metabolismo , Antibacterianos/farmacología , Antibacterianos/química , Bacterias/genética , Genoma Bacteriano
2.
J Am Chem Soc ; 144(22): 9938-9948, 2022 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-35617676

RESUMEN

Phosphonate natural products are potent inhibitors of cellular metabolism with an established record of commercialization in medicine and biotechnology. Although genome mining has emerged as an accelerated method for the discovery of new phosphonates, a robust framework of their metabolism is needed to identify the pathways most likely to yield compounds with desired activities. Here we expand our understanding of these natural products by reporting the complete biosynthetic pathway for valinophos, a phosphonopeptide natural product containing the unusual (R)-2,3-dihydroxypropylphosphonate (DHPPA) scaffold. The pathway was defined by several enzymatic transformations and intermediates previously unknown to phosphonate natural products. A dedicated dehydrogenase served as a new phosphoenolpyruvate mutase coupling enzyme. Notably, its reduction of phosphonopyruvate to phosphonolactate defined a new early branchpoint in phosphonate biosynthesis. Functionally interconnected kinase and reductase enzymes catalyzed reactions reminiscent of glycolysis and arginine biosynthesis to produce a transient, but essential, phosphonolactaldehyde intermediate. We demonstrate esterification of l-valine onto DHPPA as a new biochemical activity for ATP-Grasp ligase enzymes. Unexpectedly, a second amino acid ligase then adjoined additional amino acids at the valinyl moiety to produce a suite of DHPPA-dipeptides. The genes for DHPPA biosynthesis were discovered among genomes of bacteria from wide-ranging habitats, suggesting a wealth of unknown compounds that may originate from this core pathway. Our findings establish new biosynthetic principles for natural products and provide definition to unexplored avenues for bioactive phosphonate genome mining.


Asunto(s)
Productos Biológicos , Organofosfonatos , Bacterias/metabolismo , Productos Biológicos/química , Vías Biosintéticas , Ligasas/metabolismo , Organofosfonatos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA