Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 7(50): 27940-7, 2015 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-26651354

RESUMEN

Nano- and microcapsules engineered through layer-by-layer (LbL) assembly are finding an increasingly large number of applications as catalysts, electrochemical biosensors, bioreactors, artificial cells and drug delivery vehicles. While centrifugation-based LbL assembly is the most common method for coating template particles and preparing capsules, it is a batch process and requires frequent intervention that renders the system challenging to automate and scale up. Here, we report the use of a tapered fluidized bed (TFB) for the preparation of multilayered polymer capsules. This is a significant improvement over our recent approach of fluidizing particles in cylindrical fluidized beds (CFB) for LbL assembly. We demonstrate that TFB is compatible with particles <3 µm in diameter (an order-of-magnitude improvement compared with CFB), which can be fluidized with minimal entrainment. Additionally, layering materials were expanded to include both electrostatic and hydrogen-bonding polymer pairs (e.g., poly(allylamine hydrochloride) (PAH) and poly(styrenesulfonate) (PSS), and thiol-modified poly(methacrylic acid) (PMASH) and poly(N-vinylpyrrolidone) (PVPON), respectively). Finally, differences between capsules prepared via centrifugation-based and TFB LbL assembly were investigated. The obtained TFB microcapsules demonstrate increased film thickness and roughness compared with those prepared using centrifugation-based LbL assembly. Furthermore, PMASH microcapsules exhibit lower swelling and permeability when prepared via TFB LbL assembly compared with centrifugation-based LbL assembly due to enhanced multilayer deposition, entanglement, and cross-linking. Therefore, polymeric capsules fabricated via TFB LbL assembly may be useful for encapsulation and retention of relatively low molecular weight (∼20 kDa) hydrophilic biomacromolecules to passively or responsively release the payload for drug delivery applications.


Asunto(s)
Técnicas Biosensibles , Cápsulas/química , Sistemas de Liberación de Medicamentos , Polímeros/química , Cápsulas/síntesis química , Enlace de Hidrógeno , Permeabilidad , Polímeros/síntesis química , Pirrolidinonas/química
2.
Langmuir ; 31(33): 9054-60, 2015 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-26267807

RESUMEN

Layer-by-layer (LbL) assembly on nano- and microparticles is of interest for a range of applications, including catalysis, optics, sensors, and drug delivery. One current limitation is the standard use of manual, centrifugation-based (pellet/resuspension) methods to perform the layering steps, which can make scalable, highly controllable, and automatable production difficult to achieve. Here, we develop a fully flow-based technique using tangential flow filtration (TFF) for LbL assembly on particles. We demonstrate that multilayered particles and capsules with different sizes (from micrometers to submicrometers in diameter) can be assembled on different templates (e.g., silica and calcium carbonate) using several polymers (e.g., poly(allylamine hydrochloride), poly(styrenesulfonate), and poly(diallyldimethylammonium chloride)). The full system only contains fluidic components routinely used (and automated) in industry, such as pumps, tanks, valves, and tubing in addition to the TFF filter modules. Using the TFF LbL system, we also demonstrate the centrifugation-free assembly, including core dissolution, of drug-loaded capsules. The well-controlled, integrated, and automatable nature of the TFF LbL system provides scientific, engineering, and practical processing benefits, making it valuable for research environments and potentially useful for translating LbL assembled particles into diverse applications.


Asunto(s)
Carbonato de Calcio/química , Nanocápsulas/química , Polímeros/química , Dióxido de Silicio/química , Centrifugación/métodos , Filtración/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA