Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Transpl Int ; 35: 10915, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36406781

RESUMEN

The European Society for Organ Transplantation (ESOT) has created a platform for the development of rigorous and regularly updated evidence based guidelines for clinical practice in the transplantation field. A dedicated Guideline Taskforce, including ESOT-council members, a representative from the Centre for Evidence in Transplantation, editors of the journal Transplant International has developed transparent procedures to guide the development of guidelines, recommendations, and consensus statements. During ESOT's first Consensus Conference in November 2022, leading experts will present in-depth evidence based reviews of nine themes and will propose recommendations aimed at reaching a consensus after public discussion and assessment by an independent jury. All recommendations and consensus statements produced for the nine selected topics will be published including the entire evidence-based consensus-finding process. An extensive literature review of each topic was conducted to provide final evidence and/or expert opinion.


Asunto(s)
Trasplante de Órganos , Humanos , Consenso , Sociedades Médicas
2.
EMBO J ; 38(23): e101948, 2019 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-31559647

RESUMEN

Pathogenic bacteria invade plant tissues and proliferate in the extracellular space. Plants have evolved the immune system to recognize and limit the growth of pathogens. Despite substantial progress in the study of plant immunity, the mechanism by which plants limit pathogen growth remains unclear. Here, we show that lignin accumulates in Arabidopsis leaves in response to incompatible interactions with bacterial pathogens in a manner dependent on Casparian strip membrane domain protein (CASP)-like proteins (CASPLs). CASPs are known to be the organizers of the lignin-based Casparian strip, which functions as a diffusion barrier in roots. The spread of invading avirulent pathogens is prevented by spatial restriction, which is disturbed by defects in lignin deposition. Moreover, the motility of pathogenic bacteria is negatively affected by lignin accumulation. These results suggest that the lignin-deposited structure functions as a physical barrier similar to the Casparian strip, trapping pathogens and thereby terminating their growth.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/inmunología , Infecciones Bacterianas/microbiología , Pared Celular/inmunología , Interacciones Huésped-Patógeno/inmunología , Lignina/metabolismo , Raíces de Plantas/inmunología , Arabidopsis/metabolismo , Arabidopsis/microbiología , Pared Celular/metabolismo , Pared Celular/microbiología , Regulación de la Expresión Génica de las Plantas , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología
3.
Elife ; 3: e03115, 2014 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-25233277

RESUMEN

The endodermis represents the main barrier to extracellular diffusion in plant roots, and it is central to current models of plant nutrient uptake. Despite this, little is known about the genes setting up this endodermal barrier. In this study, we report the identification and characterization of a strong barrier mutant, schengen3 (sgn3). We observe a surprising ability of the mutant to maintain nutrient homeostasis, but demonstrate a major defect in maintaining sufficient levels of the macronutrient potassium. We show that SGN3/GASSHO1 is a receptor-like kinase that is necessary for localizing CASPARIAN STRIP DOMAIN PROTEINS (CASPs)--major players of endodermal differentiation--into an uninterrupted, ring-like domain. SGN3 appears to localize into a broader band, embedding growing CASP microdomains. The discovery of SGN3 strongly advances our ability to interrogate mechanisms of plant nutrient homeostasis and provides a novel actor for localized microdomain formation at the endodermal plasma membrane.


Asunto(s)
Proteínas de Arabidopsis/genética , Homeostasis/genética , Mutación , Proteínas Nucleares/genética , Raíces de Plantas/genética , Proteínas Quinasas/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Transporte Biológico/genética , Complejo del Señalosoma COP9 , Diferenciación Celular/genética , Difusión , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Lípidos/biosíntesis , Microscopía Confocal , Proteínas Nucleares/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Raíces de Plantas/citología , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente , Potasio/metabolismo , Proteínas Quinasas/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Agua/metabolismo
4.
Plant Physiol ; 165(4): 1709-1722, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24920445

RESUMEN

CASPARIAN STRIP MEMBRANE DOMAIN PROTEINS (CASPs) are four-membrane-span proteins that mediate the deposition of Casparian strips in the endodermis by recruiting the lignin polymerization machinery. CASPs show high stability in their membrane domain, which presents all the hallmarks of a membrane scaffold. Here, we characterized the large family of CASP-like (CASPL) proteins. CASPLs were found in all major divisions of land plants as well as in green algae; homologs outside of the plant kingdom were identified as members of the MARVEL protein family. When ectopically expressed in the endodermis, most CASPLs were able to integrate the CASP membrane domain, which suggests that CASPLs share with CASPs the propensity to form transmembrane scaffolds. Extracellular loops are not necessary for generating the scaffold, since CASP1 was still able to localize correctly when either one of the extracellular loops was deleted. The CASP first extracellular loop was found conserved in euphyllophytes but absent in plants lacking Casparian strips, an observation that may contribute to the study of Casparian strip and root evolution. In Arabidopsis (Arabidopsis thaliana), CASPL showed specific expression in a variety of cell types, such as trichomes, abscission zone cells, peripheral root cap cells, and xylem pole pericycle cells.

5.
Curr Opin Plant Biol ; 15(6): 608-17, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23026117

RESUMEN

Specialised plant cell types often locally modify their cell walls as part of a developmental program, as do cells that are challenged by particular environmental conditions. Modifications can include deposition of secondary cellulose, callose, cutin, suberin or lignin. Although the biosyntheses of cell wall components are more and more understood, little is known about the mechanisms that control localised deposition of wall materials. During metaxylem vessel differentiation, site-specific cell wall deposition is locally prevented by the microtubule depolymerising protein MIDD1, which disassembles the cytoskeleton and precludes the cellulose synthase complex from depositing cellulose. As a result, metaxylem vessel secondary cell wall appears pitted. How MIDD1 is tethered at the plasma membrane and how other cell wall polymers are locally deposited remain elusive. Casparian strips in the root endodermis represent a further example of local cell wall deposition. The recent discovery of the Casparian Strip membrane domain Proteins (CASPs), which are located at the plasma membrane and are important for the site-specific deposition of lignin during Casparian strip development, establishes the root endodermis as an attractive model system to study the mechanisms of localised cell wall modifications. How secondary modifications are modulated and monitored during development or in response to environmental changes is another question that still misses a complete picture.


Asunto(s)
Membrana Celular/metabolismo , Pared Celular/metabolismo , Proteínas de la Membrana/metabolismo , Diferenciación Celular , Lignina/metabolismo , Microtúbulos/metabolismo , Células Vegetales/metabolismo , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , Plantas/metabolismo , Polimerizacion , Unión Proteica , Xilema/enzimología , Xilema/metabolismo
6.
Protoplasma ; 249(3): 433-43, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21735349

RESUMEN

Controlling external compound entrance is essential for plant survival. To set up an efficient and selective sorting of nutrients, free diffusion via the apoplast in vascular plants is blocked at the level of the endodermis. Although we have learned a lot about endodermal specification in the last years, information regarding its differentiation is still very limited. A differentiated endodermal cell can be defined by the presence of the "Casparian strip" (CS), a cell wall modification described first by Robert Caspary in 1865. While the anatomical description of CS in many vascular plants has been very detailed, we still lack molecular information about the establishment of the Casparian strips and their actual function in roots. The recent isolation of a novel protein family, the CASPs, that localizes precisely to a domain of the plasma membrane underneath the CS represents an excellent point of entry to explore CS function and formation. In addition, it has been shown that the endodermis contains transporters that are localized to either the central (stele-facing) or peripheral (soil-facing) plasma membranes. These features suggest that the endodermis functions as a polar plant epithelium.


Asunto(s)
Arabidopsis/citología , Diferenciación Celular , Epidermis de la Planta/fisiología , Haz Vascular de Plantas/citología , Arabidopsis/metabolismo , Arabidopsis/fisiología , Proteínas de Arabidopsis/metabolismo , Polaridad Celular , Pared Celular/metabolismo , Pared Celular/fisiología , Proteínas de la Matriz de Golgi , Proteínas de la Membrana/metabolismo , Raíces de Plantas/citología , Raíces de Plantas/metabolismo , Raíces de Plantas/fisiología , Haz Vascular de Plantas/fisiología , Transporte de Proteínas
7.
Nature ; 473(7347): 380-3, 2011 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-21593871

RESUMEN

Polarized epithelia are fundamental to multicellular life. In animal epithelia, conserved junctional complexes establish membrane diffusion barriers, cellular adherence and sealing of the extracellular space. Plant cellular barriers are of independent evolutionary origin. The root endodermis strongly resembles a polarized epithelium and functions in nutrient uptake and stress resistance. Its defining features are the Casparian strips, belts of specialized cell wall material that generate an extracellular diffusion barrier. The mechanisms localizing Casparian strips are unknown. Here we identify and characterize a family of transmembrane proteins of previously unknown function. These 'CASPs' (Casparian strip membrane domain proteins) specifically mark a membrane domain that predicts the formation of Casparian strips. CASP1 displays numerous features required for a constituent of a plant junctional complex: it forms complexes with other CASPs; it becomes immobile upon localization; and it sediments like a large polymer. CASP double mutants display disorganized Casparian strips, demonstrating a role for CASPs in structuring and localizing this cell wall modification. To our knowledge, CASPs are the first molecular factors that are shown to establish a plasma membrane and extracellular diffusion barrier in plants, and represent a novel way of epithelial barrier formation in eukaryotes.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citología , Arabidopsis/metabolismo , Membrana Celular/metabolismo , Proteínas de la Membrana/metabolismo , Raíces de Plantas/citología , Raíces de Plantas/metabolismo , Arabidopsis/ultraestructura , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/ultraestructura , Biopolímeros/química , Biopolímeros/metabolismo , Difusión , Espacio Extracelular/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Proteínas de la Membrana/genética , Proteínas de la Membrana/ultraestructura , Datos de Secuencia Molecular , Familia de Multigenes , Unión Proteica
8.
Eur J Neurosci ; 29(4): 671-8, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19200072

RESUMEN

Sensory coding strategies within vertebrates involve the expression of a limited number of receptor types per sensory cell. In mice, each vomeronasal sensory neuron transcribes monoallelically a single V1R pheromone receptor gene, chosen from a large V1R repertoire. The nature of the signals leading to this strict receptor expression is unknown, but is apparently based on a negative feedback mechanism initiated by the transcription of the first randomly chosen functional V1R gene. We show, in vivo, that the genetic replacement of the V1rb2 pheromone receptor coding sequence by an unrelated one from the odorant receptor gene M71 maintains gene exclusion. The expression of this exogenous odorant receptor in vomeronasal neurons does not trigger the transcription of odorant receptor-associated signalling molecules. These results strongly suggest that despite the different odorant and vomeronasal receptor expression sites, function and transduction cascades, a common mechanism is used by these chemoreceptors to regulate their transcription.


Asunto(s)
Regulación de la Expresión Génica , Neuronas Receptoras Olfatorias/metabolismo , Receptores Odorantes/genética , Receptores de Feromonas/genética , Células Receptoras Sensoriales/metabolismo , Órgano Vomeronasal/metabolismo , Secuencia de Aminoácidos , Animales , Femenino , Técnicas de Sustitución del Gen , Inmunohistoquímica , Hibridación in Situ , Masculino , Ratones , Ratones Transgénicos , Microscopía Confocal , Datos de Secuencia Molecular , Bulbo Olfatorio/metabolismo , Receptores Odorantes/metabolismo , Receptores de Feromonas/metabolismo , Homología de Secuencia
9.
EMBO J ; 26(14): 3423-30, 2007 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-17611603

RESUMEN

In mammals, perception of pheromones is based on the expression in each vomeronasal sensory neuron of a limited set of receptor genes, chosen among a large repertoire. Here, we report an extremely tight control of the monogenic and monoallelic transcription of the V1rb2 receptor gene. Combining genetic and electrophysiological approaches, we show that the transcription of a non-functional V1r allele leads to the coexpression of another, functional V1r gene. The choice of this coexpressed gene surprisingly includes genes located on the cluster homologous to the one from which the mutant allele is transcribed. However, V1r genes located in cis relative to the transcribed mutant allele are excluded from the coexpression choice. Our observations strongly suggest a monogenic regulatory mechanism acting (a) at a general level, via the expression of the V1r receptor itself, and (b) at a more local level, defined by the V1r gene cluster.


Asunto(s)
Regulación de la Expresión Génica , Familia de Multigenes/genética , Receptores de Feromonas/genética , Alelos , Animales , Células Quimiorreceptoras/metabolismo , Factores Quimiotácticos/genética , Eliminación de Gen , Masculino , Ratones , Neuronas Aferentes/citología , Neuronas Aferentes/metabolismo , Órgano Vomeronasal/citología , Órgano Vomeronasal/metabolismo
10.
Eur J Neurosci ; 23(11): 2887-94, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16819977

RESUMEN

In mammals, sensory neurons from the main olfactory and vomeronasal systems project their axons to the olfactory bulbs in the brain. We here report that a cluster of neurons, distinct from these two systems, located at the very tip of the mouse nose and called the Grüneberg ganglion expresses the mature olfactory-sensory neuron-specific marker olfactory marker protein (OMP), but is unlikely to express known odorant or pheromone receptors. The ganglion is present at birth and maintained during adult life. Tracing experiments indicate that these neurons target ipsilaterally to a specific set of glomeruli located on the caudal part of the olfactory bulb, and that this connection is necessary for the survival of the ganglion. The glomerular targets are structures previously proposed to be associated with suckling behaviour. These observations strongly suggest that this peculiar olfactory neuronal population plays a sensory role, possibly linked to chemoperception.


Asunto(s)
Ganglios Sensoriales/citología , Bulbo Olfatorio/citología , Vías Olfatorias/citología , Neuronas Receptoras Olfatorias/fisiología , Aminoácidos/metabolismo , Animales , Animales Recién Nacidos , Desnervación Autonómica/métodos , Bromodesoxiuridina/metabolismo , Embrión de Mamíferos , Femenino , Ganglios Sensoriales/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteínas Fluorescentes Verdes/metabolismo , Inmunohistoquímica/métodos , Masculino , Ratones , Ratones Transgénicos , Proteína Marcadora Olfativa/metabolismo , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Órgano Vomeronasal/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...