Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(12)2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37373257

RESUMEN

Necroptosis is a recently discovered form of regulated cell death characterized by the disruption of plasma membrane integrity and the release of intracellular content. Mixed lineage kinase domain-like (MLKL) protein is the main player of this cell death pathway as it mediates the final step of plasma membrane permeabilization. Despite the significant progress in our knowledge of the necroptotic pathway and MLKL biology, the precise mechanism of how MLKL functions remain unclear. To understand in what way MLKL executes necroptosis, it is crucial to decipher how the molecular machinery of regulated cell death is activated in response to different stimuli or stressors. It is also indispensable to unveiling the structural elements of MLKL and the cellular players that are required for its regulation. In this review, we discuss the key steps that lead to MLKL activation, possible models that explain how it becomes the death executor in necroptosis, and its emerging alternative functions. We also summarize the current knowledge about the role of MLKL in human disease and provide an overview of existing strategies aimed at developing new inhibitors that target MLKL for necroptosis intervention.


Asunto(s)
Apoptosis , Proteínas Quinasas , Humanos , Apoptosis/fisiología , Proteínas Quinasas/metabolismo , Necroptosis , Muerte Celular , Membrana Celular/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo
2.
Cell Calcium ; 114: 102778, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37356350

RESUMEN

Regulation of proliferation and cell death is fundamental for organismal development and for restoring tissue homeostasis after biological stress. During the last years, several forms of regulated cell death have been discovered that share the loss of plasma membrane integrity as a common hallmark and that are collectively known as regulated necrosis (RN) pathways. During RN, plasma membrane damage is sensed by the cell by increases in the levels of intracellular calcium. Interestingly, cytosolic calcium influx can either lead to cell death or survival, given the versatile role of this ion in regulating multiple signaling processes. Among them, membrane repair enables the cells to tolerate the injury and, even in some conditions, survive. Here, we review calcium signaling in the context of RN pathways, with a focus on ferroptosis, a type of RN in which plasma membrane damage is elicited by the accumulation of oxidized lipids. In contrast, other forms of RN such as necroptosis and pyroptosis require dedicated pore-forming proteins for plasma membrane damage and cell death. We first focus on the current knowledge regarding the contribution of calcium to ferroptosis, and then illustrate the similarities and differences in calcium signaling with necroptosis and pyroptosis. Calcium signaling emerges as a key event in the cellular responses to membrane damage and in the regulation of cell death.


Asunto(s)
Calcio , Ferroptosis , Humanos , Necrosis/metabolismo , Apoptosis , Muerte Celular
3.
Toxins (Basel) ; 15(1)2023 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-36668899

RESUMEN

Actinoporins have emerged as archetypal α-pore-forming toxins (PFTs) that promote the formation of pores in membranes upon oligomerization and insertion of an α-helix pore-forming domain in the bilayer. These proteins have been used as active components of immunotoxins, therefore, understanding their lytic mechanism is crucial for developing this and other applications. However, the mechanism of how the biophysical properties of the membrane modulate the properties of pores generated by actinoporins remains unclear. Here we studied the effect of membrane fluidity on the permeabilizing activity of sticholysin I (St I), a toxin that belongs to the actinoporins family of α-PFTs. To modulate membrane fluidity we used vesicles made of an equimolar mixture of phosphatidylcholine (PC) and egg sphingomyelin (eggSM), in which PC contained fatty acids of different acyl chain lengths and degrees of unsaturation. Our detailed single-vesicle analysis revealed that when membrane fluidity is high, most of the vesicles are partially permeabilized in a graded manner. In contrast, more rigid membranes can be either completely permeabilized or not, indicating an all-or-none mechanism. Altogether, our results reveal that St I pores can be heterogeneous in size and stability, and that these properties depend on the fluid state of the lipid bilayer. We propose that membrane fluidity at different regions of cellular membranes is a key factor to modulate the activity of the actinoporins, which has implications for the design of different therapeutic strategies based on their lytic action.


Asunto(s)
Venenos de Cnidarios , Anémonas de Mar , Animales , Fluidez de la Membrana , Compuestos Orgánicos/química , Membrana Dobles de Lípidos , Membrana Celular/metabolismo , Fosfatidilcolinas , Venenos de Cnidarios/química , Anémonas de Mar/química
4.
J Phys Chem Lett ; 13(3): 822-829, 2022 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-35044771

RESUMEN

Analysis of single-molecule brightness allows subunit counting of high-order oligomeric biomolecular complexes. Although the theory behind the method has been extensively assessed, systematic analysis of the experimental conditions required to accurately quantify the stoichiometry of biological complexes remains challenging. In this work, we develop a high-throughput, automated computational pipeline for single-molecule brightness analysis that requires minimal human input. We use this strategy to systematically quantify the accuracy of counting under a wide range of experimental conditions in simulated ground-truth data and then validate its use on experimentally obtained data. Our approach defines a set of conditions under which subunit counting by brightness analysis is designed to work optimally and helps in establishing the experimental limits in quantifying the number of subunits in a complex of interest. Finally, we combine these features into a powerful, yet simple, software that can be easily used for the analysis of the stoichiometry of such complexes.


Asunto(s)
Imagen Individual de Molécula
6.
Toxins (Basel) ; 13(9)2021 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-34564674

RESUMEN

Equinatoxin II (EqtII) and Fragaceatoxin C (FraC) are pore-forming toxins (PFTs) from the actinoporin family that have enhanced membrane affinity in the presence of sphingomyelin (SM) and phase coexistence in the membrane. However, little is known about the effect of these proteins on the nanoscopic properties of membrane domains. Here, we used combined confocal microscopy and force mapping by atomic force microscopy to study the effect of EqtII and FraC on the organization of phase-separated phosphatidylcholine/SM/cholesterol membranes. To this aim, we developed a fast, high-throughput processing tool to correlate structural and nano-mechanical information from force mapping. We found that both proteins changed the lipid domain shape. Strikingly, they induced a reduction in the domain area and circularity, suggesting a decrease in the line tension due to a lipid phase height mismatch, which correlated with proteins binding to the domain interfaces. Moreover, force mapping suggested that the proteins affected the mechanical properties at the edge, but not in the bulk, of the domains. This effect could not be revealed by ensemble force spectroscopy measurements supporting the suitability of force mapping to study local membrane topographical and mechanical alterations by membranotropic proteins.


Asunto(s)
Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Venenos de Cnidarios/metabolismo , Venenos de Cnidarios/toxicidad , Microdominios de Membrana/metabolismo , Anémonas de Mar/química , Anémonas de Mar/metabolismo , Esfingomielinas/metabolismo , Animales , Microdominios de Membrana/efectos de los fármacos , Microscopía de Fuerza Atómica , Microscopía Confocal
7.
Toxins (Basel) ; 13(8)2021 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-34437438

RESUMEN

Actinoporins (APs) are soluble pore-forming proteins secreted by sea anemones that experience conformational changes originating in pores in the membranes that can lead to cell death. The processes involved in the binding and pore-formation of members of this protein family have been deeply examined in recent years; however, the intracellular responses to APs are only beginning to be understood. Unlike pore formers of bacterial origin, whose intracellular impact has been studied in more detail, currently, we only have knowledge of a few poorly integrated elements of the APs' intracellular action. In this review, we present and discuss an updated landscape of the studies aimed at understanding the intracellular pathways triggered in response to APs attack with particular reference to sticholysin II, the most active isoform produced by the Caribbean Sea anemone Stichodactyla helianthus. To achieve this, we first describe the major alterations these cytolysins elicit on simpler cells, such as non-nucleated mammalian erythrocytes, and then onto more complex eukaryotic cells, including tumor cells. This understanding has provided the basis for the development of novel applications of sticholysins such as the construction of immunotoxins directed against undesirable cells, such as tumor cells, and the design of a cancer vaccine platform. These are among the most interesting potential uses for the members of this toxin family that have been carried out in our laboratory.


Asunto(s)
Muerte Celular/efectos de los fármacos , Venenos de Cnidarios/metabolismo , Venenos de Cnidarios/toxicidad , Inmunotoxinas/química , Inmunotoxinas/metabolismo , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Anémonas de Mar/química , Animales
8.
Cell Death Differ ; 28(12): 3235-3250, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34079078

RESUMEN

The blockade of cellular differentiation represents a hallmark of acute myeloid leukemia (AML), which is largely attributed to the dysfunction of lineage-specific transcription factors controlling cellular differentiation. However, alternative mechanisms of cellular differentiation programs in AML remain largely unexplored. Here we report that mixed lineage kinase domain-like protein (MLKL) contributes to the cellular differentiation of transformed hematopoietic progenitor cells in AML. Using gene-targeted mice, we show that MLKL facilitates the release of granulocyte colony-stimulating factor (G-CSF) by controlling membrane permeabilization in leukemic cells. Mlkl-/- hematopoietic stem and progenitor cells released reduced amounts of G-CSF while retaining their capacity for CSF3 (G-CSF) mRNA expression, G-CSF protein translation, and G-CSF receptor signaling. MLKL associates with early endosomes and controls G-CSF release from intracellular storage by plasma membrane pore formation, whereas cell death remained unaffected by loss of MLKL. Of note, MLKL expression was significantly reduced in AML patients, specifically in those with a poor-risk AML subtype. Our data provide evidence that MLKL controls myeloid differentiation in AML by controlling the release of G-CSF from leukemic progenitor cells.


Asunto(s)
Factor Estimulante de Colonias de Granulocitos/metabolismo , Leucemia Mieloide Aguda/genética , Proteínas Quinasas/metabolismo , Animales , Humanos , Leucemia Mieloide Aguda/patología , Ratones
9.
Curr Opin Struct Biol ; 69: 108-116, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33945958

RESUMEN

Pore-forming proteins (PFPs) are of special interest because of the association of their activity with the disruption of the membrane impermeability barrier and cell death. They generally convert from a monomeric, soluble form into transmembrane oligomers that induce the opening of membrane pores. The study of pore formation in membranes with molecular detail remains a challenging endeavor because of its highly dynamic and complex nature, usually involving diverse oligomeric structures with different functionalities. Here we discuss current methods applied for the structural and functional characterization of PFPs at the individual vesicle and cell level. We highlight how the development of high-resolution and single-molecule imaging techniques allows the analysis of the structural organization of protein oligomers and pore entities in lipid membranes.


Asunto(s)
Porinas , Membrana Celular , Sustancias Macromoleculares
10.
Cell Death Differ ; 28(5): 1644-1657, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33335287

RESUMEN

Ferroptosis is an iron-dependent form of regulated necrosis associated with lipid peroxidation. Despite its key role in the inflammatory outcome of ferroptosis, little is known about the molecular events leading to the disruption of the plasma membrane during this type of cell death. Here we show that a sustained increase in cytosolic Ca2+ is a hallmark of ferroptosis that precedes complete bursting of the cell. We report that plasma membrane damage leading to ferroptosis is associated with membrane nanopores of a few nanometers in radius and that ferroptosis, but not lipid peroxidation, can be delayed by osmoprotectants. Importantly, Ca2+ fluxes during ferroptosis induce the activation of the ESCRT-III-dependent membrane repair machinery, which counterbalances the kinetics of cell death and modulates the immunological signature of ferroptosis. Our findings with ferroptosis provide a unifying concept that sustained increase of cytosolic Ca2+ prior to plasma membrane rupture is a common feature of regulated types of necrosis and position ESCRT-III activation as a general protective mechanism in these lytic cell death pathways.


Asunto(s)
Calcio/metabolismo , Muerte Celular/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Ferroptosis/genética , Humanos , Cinética , Transfección
11.
Chem Phys Lipids ; 234: 105026, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33309552

RESUMEN

Pore-forming proteins (PFPs) and small antimicrobial peptides (AMPs) represent a large family of molecules with the common ability to punch holes in cell membranes to alter their permeability. They play a fundamental role as infectious bacteria's defensive tools against host's immune system and as executors of endogenous machineries of regulated cell death in eukaryotic cells. Despite being highly divergent in primary sequence and 3D structure, specific folds of pore-forming domains have been conserved. In fact, pore formation is considered an ancient mechanism that takes place through a general multistep process involving: membrane partitioning and insertion, oligomerization and pore formation. However, different PFPs and AMPs assemble and form pores following different mechanisms that could end up either in the formation of protein-lined or protein-lipid pores. In this review, we analyze the current findings in the mechanism of action of different PFPs and AMPs that support a wide role of membrane pore formation in nature. We also provide the newest insights into the development of state-of-art techniques that have facilitated the characterization of membrane pores. To understand the physiological role of these peptides/proteins or develop clinical applications, it is essential to uncover the molecular mechanism of how they perforate membranes.


Asunto(s)
Perforina/metabolismo , Muerte Celular , Membrana Celular/metabolismo , Humanos , Proteínas Citotóxicas Formadoras de Poros/metabolismo
12.
EMBO J ; 39(23): e105753, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33124082

RESUMEN

The discovery of alternative signaling pathways that regulate cell death has revealed multiple strategies for promoting cell death with diverse consequences at the tissue and organism level. Despite the divergence in the molecular components involved, membrane permeabilization is a common theme in the execution of regulated cell death. In apoptosis, the permeabilization of the outer mitochondrial membrane by BAX and BAK releases apoptotic factors that initiate the caspase cascade and is considered the point of no return in cell death commitment. Pyroptosis and necroptosis also require the perforation of the plasma membrane at the execution step, which involves Gasdermins in pyroptosis, and MLKL in the case of necroptosis. Although BAX/BAK, Gasdermins and MLKL share certain molecular features like oligomerization, they form pores in different cellular membranes via distinct mechanisms. Here, we compare and contrast how BAX/BAK, Gasdermins, and MLKL alter membrane permeability from a structural and biophysical perspective and discuss the general principles of membrane permeabilization in the execution of regulated cell death.


Asunto(s)
Muerte Celular/inmunología , Muerte Celular/fisiología , Muerte Celular Regulada/inmunología , Muerte Celular Regulada/fisiología , Animales , Apoptosis/fisiología , Autofagia/fisiología , Caspasas/metabolismo , Membrana Celular/metabolismo , Permeabilidad de la Membrana Celular , Humanos , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Necroptosis/fisiología , Proteínas Quinasas/metabolismo , Piroptosis/fisiología , Transducción de Señal/fisiología
13.
Int J Mol Sci ; 21(7)2020 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-32244433

RESUMEN

Pyroptosis, necroptosis, and ferroptosis are well-characterized forms of regulated necrosis that have been associated with human diseases. During regulated necrosis, plasma membrane damage facilitates the movement of ions and molecules across the bilayer, which finally leads to cell lysis and release of intracellular content. Therefore, these types of cell death have an inflammatory phenotype. Each type of regulated necrosis is mediated by a defined machinery comprising protein and lipid molecules. Here, we discuss how the interaction and reshaping of these cellular components are essential and distinctive processes during pyroptosis, necroptosis, and ferroptosis. We point out that although the plasma membrane is the common target in regulated necrosis, different mechanisms of permeabilization have emerged depending on the cell death form. Pore formation by gasdermins (GSDMs) is a hallmark of pyroptosis, while mixed lineage kinase domain-like (MLKL) protein facilitates membrane permeabilization in necroptosis, and phospholipid peroxidation leads to membrane damage in ferroptosis. This diverse repertoire of mechanisms leading to membrane permeabilization contributes to define the specific inflammatory and immunological outcome of each type of regulated necrosis. Current efforts are focused on new therapies that target critical protein and lipid molecules on these pathways to fight human pathologies associated with inflammation.


Asunto(s)
Membranas/metabolismo , Necrosis/metabolismo , Proteínas/metabolismo , Animales , Apoptosis/fisiología , Muerte Celular , Membrana Celular/metabolismo , Ferroptosis/fisiología , Humanos , Inflamación , Lípidos , Necroptosis/fisiología , Permeabilidad , Piroptosis
14.
Int Rev Cell Mol Biol ; 351: 197-236, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32247580

RESUMEN

Lipids are fundamental to life as structural components of cellular membranes and for signaling. They are also key regulators of different cellular processes such as cell division, proliferation, and death. Regulated cell death (RCD) requires the engagement of lipids and lipid metabolism for the initiation and execution of its killing machinery. The permeabilization of lipid membranes is a hallmark of RCD that involves, for each kind of cell death, a unique lipid profile. While the permeabilization of the mitochondrial outer membrane allows the release of apoptotic factors to the cytosol during apoptosis, permeabilization of the plasma membrane facilitates the release of intracellular content in other nonapoptotic types of RCD like necroptosis and ferroptosis. Lipids and lipid membranes are important accessory molecules required for the activation of protein executors of cell death such as BAX in apoptosis and MLKL in necroptosis. Peroxidation of membrane phospholipids and the subsequent membrane destabilization is a prerequisite to ferroptosis. Here, we discuss how lipids are essential players in apoptosis, the most common form of RCD, and also their role in necroptosis and ferroptosis. Altogether, we aim to highlight the contribution of lipids and membrane dynamics in cell death regulation.


Asunto(s)
Muerte Celular , Lípidos , Humanos , Peroxidación de Lípido , Mitocondrias/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo
15.
Biophys J ; 117(9): 1563-1576, 2019 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-31587828

RESUMEN

Sticholysins are pore-forming toxins of biomedical interest and represent a prototype of proteins acting through the formation of protein-lipid or toroidal pores. Peptides spanning the N-terminus of sticholysins can mimic their permeabilizing activity and, together with the full-length toxins, have been used as a tool to understand the mechanism of pore formation in membranes. However, the lytic mechanism of these peptides and the lipid shape modulating their activity are not completely clear. In this article, we combine molecular dynamics simulations and experimental biophysical tools to dissect different aspects of the pore-forming mechanism of StII1-30, a peptide derived from the N-terminus of sticholysin II (StII). With this combined approach, membrane curvature induction and flip-flop movement of the lipids were identified as two important membrane remodeling steps mediated by StII1-30. Pore formation by this peptide was enhanced by the presence of the negatively curved lipid phosphatidylethanolamine in membranes. This lipid emerged not only as a facilitator of membrane interactions but also as a structural element of the StII1-30 pore that is recruited to the ring upon its assembly. Collectively, these, to our knowledge, new findings support a toroidal model for the architecture of the pore formed by StII1-30 and provide new molecular insight into the role of phosphatidylethanolamine as a membrane component that can easily integrate into the ring of toroidal pores, thus probably aiding in their stabilization. This study contributes to a better understanding of the molecular mechanism underlying the permeabilizing activity of StII1-30 and peptides or proteins acting via a toroidal pore mechanism and offers an informative framework for the optimization of the biomedical application of this and similar molecules.


Asunto(s)
Membrana Celular/metabolismo , Venenos de Cnidarios/metabolismo , Modelos Moleculares , Secuencia de Aminoácidos , Animales , Venenos de Cnidarios/química , Membrana Dobles de Lípidos/química , Simulación de Dinámica Molecular , Permeabilidad , Fosfatidiletanolaminas/química , Soluciones , Porcinos
16.
J Cell Biol ; 218(2): 683-699, 2019 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-30470711

RESUMEN

FGF2 is exported from cells by an unconventional secretory mechanism. Here, we directly visualized individual FGF2 membrane translocation events at the plasma membrane using live cell TIRF microscopy. This process was dependent on both PI(4,5)P2-mediated recruitment of FGF2 at the inner leaflet and heparan sulfates capturing FGF2 at the outer plasma membrane leaflet. By simultaneous imaging of both FGF2 membrane recruitment and the appearance of FGF2 at the cell surface, we revealed the kinetics of FGF2 membrane translocation in living cells with an average duration of ∼200 ms. Furthermore, we directly demonstrated FGF2 oligomers at the inner leaflet of living cells with a FGF2 dimer being the most prominent species. We propose this dimer to represent a key intermediate in the formation of higher FGF2 oligomers that form membrane pores and put forward a kinetic model explaining the mechanism by which membrane-inserted FGF2 oligomers serve as dynamic translocation intermediates during unconventional secretion of FGF2.


Asunto(s)
Membrana Celular/metabolismo , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Animales , Células CHO , Cricetulus , Factor 2 de Crecimiento de Fibroblastos/genética , Células HEK293 , Heparitina Sulfato/metabolismo , Humanos , Cinética , Microscopía Fluorescente , Modelos Biológicos , Fosfatidilinositol 4,5-Difosfato/metabolismo , Multimerización de Proteína , Transporte de Proteínas , Vías Secretoras
17.
Biochimie ; 156: 109-117, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30326255

RESUMEN

Sticholysin I and II (Sts: St I and St II) are proteins of biomedical interest that form pores upon the insertion of their N-terminus in the plasma membrane. Peptides spanning the N-terminal residues of StI (StI1-31) or StII (StII1-30) can mimic the permeabilizing ability of these toxins, emerging as candidates to rationalize their potential biomedical applications. These peptides have different activities that correlate with their hydrophobicity. However, it is not clear how this property contributes to peptide folding in solution or upon binding to membranes. Here we compared the conformational properties of these peptides and shorter versions lacking the hydrophobic segment 1-11 of StI (StI12-31) or 1-10 of StII (StII11-30). Folding of peptides was assessed in solution and in membrane mimetic systems and related with their ability to bind to membranes and to permeabilize lipid vesicles. Our results suggest that the differences in activity among peptides could be ascribed to their different folding propensity and different membrane binding properties. In solution, StII1-30 tends to acquire α-helical conformation coexisting with self-associated structures, while StI1-31 remains structureless. Both peptides fold as α-helix in membrane; but StII1-30 also self-associates in the lipid environment, a process that is favored by its higher affinity for membrane. We stress the contribution of the non-polar/polar balance of the 1-10 amino acid sequence of the peptides as a determining factor for different self-association capabilities. Such difference in hydrophobicity seems to determine the molecular path of peptides folding upon binding to membranes, with an impact in their permeabilizing activity. This study contributes to a better understanding of the molecular mechanisms underlying the permeabilizing activity of Sts N-terminal derived peptides, with connotation for the exploitation of these small molecules as alternative of the full-length toxins in clinical settings.


Asunto(s)
Venenos de Cnidarios/química , Membranas Artificiales , Pliegue de Proteína , Compuestos Orgánicos/química , Estructura Secundaria de Proteína , Relación Estructura-Actividad
18.
Biochimie ; 148: 18-35, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29452280

RESUMEN

Sticholysin II (StII) is a pore-forming toxin of biomedical interest that belongs to the actinoporin protein family. Sticholysins are currently under examination as an active immunomodulating component of a vaccinal platform against tumoral cells and as a key element of a nucleic acids delivery system to cell cytosol. These proteins form pores in the plasma membrane leading to ion imbalance and cell lysis. However, the intracellular mechanisms triggered by actinoporins upon binding to membranes and its consequences for cell death are barely understood. Here, we have examined the cytotoxicity and intracellular responses induced by StII upon binding to human B-cell lymphoma Raji in vitro. StII cytotoxicity involves a functional actin cytoskeleton, induces cellular swelling, lysis and the concomitant release of cytosol content. In addition, StII induces calcium release mainly from the Endoplasmic Reticulum, activates Mitogen-Activated Protein Kinase ERK and impairs mitochondrial membrane potential. Furthermore, StII stimulates the expression of receptor interacting protein kinase 1 (RIP1), normally related to different forms of regulated cell death such as apoptosis and necroptosis. In correspondence, necrostatin-1, an inhibitor of this kinase, reduces StII cytotoxicity. However, the mechanism of cell death activated by StII does not involve caspases activation, typical molecular features of apoptosis and pyroptosis. Our results suggest that, beyond pore-formation and cell lysis, StII-induced cytotoxicity could involve other regulated intracellular mechanisms connected to RIP1-MEK1/2 -ERK1/2- pathways. This opens new perspectives and challenges the general point of view that these toxins induce a completely unregulated mechanism of necrotic cell death. This study contributes to a better understanding of the molecular mechanisms involved in toxin-cell interaction and the implications for cell functioning, with connotation for the exploitations of these toxins in clinical settings.


Asunto(s)
Muerte Celular/efectos de los fármacos , Venenos de Cnidarios/toxicidad , Citotoxinas/toxicidad , Espacio Intracelular/efectos de los fármacos , Espacio Intracelular/metabolismo , Línea Celular , Membrana Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Humanos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Transducción de Señal/efectos de los fármacos
19.
Biopolymers ; 2018 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-29359791

RESUMEN

Sticholysin II (StII) is a pore-forming actinoporin from the sea anemone Stichodactyla helianthus. A mechanistic model of its action has been proposed: proteins bind to cell membrane, insert their N-termini into the lipid core and assemble into homo-tetramer pores responsible for host-cell death. Because very likely the first 10 residues of StII N-terminus are critical for membrane penetration, to dissect the molecular details of that functionality, we studied two synthetic peptides: StII1-30 and StII16-35 . They show diverse haemolytic and candidacidal activity that correlate with distinct orientations in SDS micelles. NMR shows that StII1-30 partly inserts into the micelle, while StII16-35 lays on the micelle surface. These results justify the diverse concentration dependence of their candidacidal activity supposing a different mechanism of action and providing new hints on StII lytic activity at molecular level. Biotechnological application of these peptides, focused on the development of therapeutic immunocomplexes, may be envisaged.

20.
Biophys Rev ; 9(5): 529-544, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28853034

RESUMEN

Actinoporins constitute a unique class of pore-forming toxins found in sea anemones that are able to bind and oligomerize in membranes, leading to cell swelling, impairment of ionic gradients and, eventually, to cell death. In this review we summarize the knowledge generated from the combination of biochemical and biophysical approaches to the study of sticholysins I and II (Sts, StI/II), two actinoporins largely characterized by the Center of Protein Studies at the University of Havana during the last 20 years. These approaches include strategies for understanding the toxin structure-function relationship, the protein-membrane association process leading to pore formation and the interaction of toxin with cells. The rational combination of experimental and theoretical tools have allowed unraveling, at least partially, of the complex mechanisms involved in toxin-membrane interaction and of the molecular pathways triggered upon this interaction. The study of actinoporins is important not only to gain an understanding of their biological roles in anemone venom but also to investigate basic molecular mechanisms of protein insertion into membranes, protein-lipid interactions and the modulation of protein conformation by lipid binding. A deeper knowledge of the basic molecular mechanisms involved in Sts-cell interaction, as described in this review, will support the current investigations conducted by our group which focus on the design of immunotoxins against tumor cells and antigen-releasing systems to cell cytosol as Sts-based vaccine platforms.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...