Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biotechnol Bioeng ; 120(10): 3067-3078, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37317560

RESUMEN

Adipose tissue is an attractive source of mesenchymal stem cells (at-MSCs), but their low osteogenic potential limits their use in bone regeneration. Adipose tissue plays a role in pro-inflammatory diseases by releasing cytokines with a catabolic effect on bone, such as tumor necrosis factor-alpha (TNF-α). Thus, we hypothesized that endogenous TNF-α could have a negative effect on at-MSC differentiation into osteoblasts. Short interfering RNAs (siRNAs) targeting TNF-α receptors (siR1, siR2, and si1R/R2) were transfected into at-MSCs, and cell differentiation was assessed by measuring the expression of bone markers, ALP activity, and mineralized matrix. Scrambled was used as Control. Knockout at-MSCs (KOR1/R2) was injected in mice calvaria defects, and bone formation was evaluated by microtomography and histological analysis. Data were compared by Kruskal-Wallis or analysis of variance (5%). The expression of bone markers confirmed that at-MSCs differentiate less than bone marrow MSCs. In silenced cells, the expression of Alp, Runx2, and Opn was generally higher compared to Control. ALP, RUNX2, and OPN were expressed at elevated levels in silenced groups, most notably at-MSCs-siR1/R2. ALP was detected at high levels in at-MSCs-siR1/R2 and in-MSCs-siR1, followed by an increase in mineralized nodules in at-MSCs-siR1/R2. As the morphometric parameters increased, the groups treated with KOR1/R2 exhibited slight bone formation near the edges of the defects. Endogenous TNF-α inhibits osteoblast differentiation and activity in at-MSCs, and its disruption increases bone formation. While opening a path of investigation, that may lead to the development of new treatments for bone regeneration using at-MSC-based therapies.


Asunto(s)
Células Madre Mesenquimatosas , Osteogénesis , Factor de Necrosis Tumoral alfa , Animales , Ratones , Diferenciación Celular , Células Cultivadas , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Ratones Noqueados , Osteoblastos , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo
2.
J Cell Biochem ; 124(7): 1050-1063, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37293736

RESUMEN

Type 1 (T1DM) and type 2 (T2DM) diabetes mellitus are characterized by changes in glucose metabolism and cause bone damage via a variety of mechanisms, including effects on osteoblasts. We aimed to evaluate the osteoblast differentiation of mesenchymal stem cells (MSCs) from rats with T1DM or T2DM and the effects of removing the hyperglycemic stimulus on the osteogenic potential of these cells. MSCs from healthy rats were cultured in normoglycemic medium, whereas MSCs from rats with T1DM or T2DM were cultured in hyperglycemic or normoglycemic medium. T1DM and T2DM reduced osteoblast differentiation of MSCs grown in hyperglycemic media, with T1DM having a more pronounced effect, as evidenced by alkaline phosphatase activity, RUNX2 protein expression, and extracellular matrix mineralization, and modulated the gene expression of several components of the bone morphogenetic protein signaling pathway. The restoration of the normoglycemic environment partially recovers the osteogenic potential of MSCs from rats with T1DM but not with T2DM. Our findings highlight the need for specific therapies to treat T1DM- or T2DM-induced bone loss, as both disrupt osteoblast differentiation at distinct levels and likely through different mechanisms.


Asunto(s)
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Células Madre Mesenquimatosas , Ratas , Animales , Diabetes Mellitus Tipo 1/metabolismo , Células Cultivadas , Osteogénesis/genética , Diferenciación Celular , Osteoblastos/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Células Madre Mesenquimatosas/metabolismo
3.
Materials (Basel) ; 15(3)2022 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-35161039

RESUMEN

Chemical and topographical surface modifications on dental implants aim to increase the bone surface contact area of the implant and improve osseointegration. This study analyzed the cellular response of undifferentiated mesenchymal stem cells (MSC), derived from senile rats' femoral bone marrow, when cultured on a bioactive coating (by plasma electrolytic oxidation, PEO, with Ca2+ and P5+ ions), a sandblasting followed by acid-etching (SLA) surface, and a machined surface (MSU). A total of 102 Ti-6Al-4V discs were divided into three groups (n = 34). The surface chemistry was analyzed by energy dispersive spectroscopy (EDS). Cell viability assay, gene expression of osteoblastic markers, and mineralized matrix formation were investigated. The cell growth and viability results were higher for PEO vs. MSU surface (p = 0.001). An increase in cell proliferation from 3 to 7 days (p < 0.05) and from 7 to 10 days (p < 0.05) was noted for PEO and SLA surfaces. Gene expression for OSX, ALP, BSP, and OPN showed a statistical significance (p = 0.001) among groups. In addition, the PEO surface showed a higher mineralized matrix bone formation (p = 0.003). In conclusion, MSC from senile female rats cultured on SLA and PEO surfaces showed similar cellular responses and should be considered for future clinical investigations.

4.
Biomater Adv ; 134: 112548, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35012895

RESUMEN

The bone remodeling process is crucial for titanium (Ti) osseointegration and involves the crosstalk between osteoclasts and osteoblasts. Considering the high osteogenic potential of Ti with nanotopography (Ti Nano) and that osteoclasts inhibit osteoblast differentiation, we hypothesized that nanotopography attenuate the osteoclast-induced disruption of osteoblast differentiation. Osteoblasts were co-cultured with osteoclasts on Ti Nano and Ti Control and non-co-cultured osteoblasts were used as control. Gene expression analysis using RNAseq showed that osteoclasts downregulated the expression of osteoblast marker genes and upregulated genes related to histone modification and chromatin organization in osteoblasts grown on both Ti surfaces. Osteoclasts also inhibited the mRNA and protein expression of osteoblast markers, and such effect was attenuated by Ti Nano. Also, osteoclasts increased the protein expression of H3K9me2, H3K27me3 and EZH2 in osteoblasts grown on both Ti surfaces. ChIP assay revealed that osteoclasts increased accumulation of H3K27me3 that represses the promoter regions of Runx2 and Alpl in osteoblasts grown on Ti Control, which was reduced by Ti Nano. In conclusion, these data show that despite osteoclast inhibition of osteoblasts grown on both Ti Control and Ti Nano, the nanotopography attenuates the osteoclast-induced disruption of osteoblast differentiation by preventing the increase of H3K27me3 accumulation that represses the promoter regions of some key osteoblast marker genes. These findings highlight the epigenetic mechanisms triggered by nanotopography to protect osteoblasts from the deleterious effects of osteoclasts, which modulate the process of bone remodeling and may benefit the osseointegration of Ti implants.


Asunto(s)
Osteoclastos , Titanio , Histonas/metabolismo , Metilación , Osteoblastos , Osteoclastos/metabolismo , Propiedades de Superficie , Titanio/farmacología
5.
Gene Ther ; 28(12): 748-759, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33686254

RESUMEN

Cell therapy is a valuable strategy for the replacement of bone grafts and repair bone defects, and mesenchymal stem cells (MSCs) are the most frequently used cells. This study was designed to genetically edit MSCs to overexpress bone morphogenetic protein 9 (BMP-9) using Clustered Regularly Interspaced Short Palindromic Repeats/associated nuclease Cas9 (CRISPR-Cas9) technique to generate iMSCs-VPRBMP-9+, followed by in vitro evaluation of osteogenic potential and in vivo enhancement of bone formation in rat calvaria defects. Overexpression of BMP-9 was confirmed by its gene expression and protein expression, as well as its targets Hey-1, Bmpr1a, and Bmpr1b, Dlx-5, and Runx2 and  protein expression of SMAD1/5/8 and pSMAD1/5/8. iMSCs-VPRBMP-9+ displayed significant changes in the expression of a panel of genes involved in TGF-ß/BMP signaling pathway. As expected, overexpression of BMP-9 increased the osteogenic potential of MSCs indicated by increased gene expression of osteoblastic markers Runx2, Sp7, Alp, and Oc, higher ALP activity, and matrix mineralization. Rat calvarial bone defects treated with injection of iMSCs-VPRBMP-9+ exhibited increased bone formation and bone mineral density when compared with iMSCs-VPR- and phosphate buffered saline (PBS)-injected defects. This is the first study to confirm that CRISPR-edited MSCs overexpressing BMP-9 effectively enhance bone formation, providing novel options for exploring the capability of genetically edited cells to repair bone defects.


Asunto(s)
Factor 2 de Diferenciación de Crecimiento , Células Madre Mesenquimatosas , Osteogénesis , Animales , Sistemas CRISPR-Cas , Diferenciación Celular , Células Cultivadas , Factor 2 de Diferenciación de Crecimiento/genética , Células Madre Mesenquimatosas/citología , Osteogénesis/genética , Ratas
6.
J Cell Physiol ; 236(5): 3906-3917, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33124698

RESUMEN

Osteoporosis is characterized by decreased bone mass and adipocyte accumulation within the bone marrow that inhibits osteoblast maturation, leading to a high risk of fractures. Thus, we hypothesized that osteoblasts, besides being negatively affected by interacting with adipocytes, reduce the differentiation of neighboring osteoblasts through the same mechanisms that affect osteoblasts under osteoporotic conditions. We investigated the effect of osteoporosis on osteoblast differentiation and the effect of the conditioned medium of osteoblasts cocultured with adipocytes on the differentiation of other osteoblasts. Osteoporosis was induced by orchiectomy in rats and bone marrow mesenchymal stromal cells (MSCs) were differentiated into osteoblasts. Also, the bone marrow and adipose tissue MSCs were obtained from healthy rats and differentiated into osteoblasts and adipocytes, respectively. Messenger RNA expression, in situ alkaline phosphatase activity, and mineralization confirmed the inhibitory effect of osteoporosis on osteoblast differentiation. This harmful effect was mimicked by the in vitro model using the conditioned medium and it was demonstrated that osteoblasts keep the memory of the negative impact of interacting with adipocytes, revealing an unknown mechanism relevant to the osteoporotic bone loss. Finally, we showed the involvement of acetyl-histone 3 (AcH3) in bone homeostasis as its reduction induced by osteoporosis and conditioned medium impaired osteoblast differentiation. The AcH3 involvement was proved by treating osteoblasts with Trichostatin A that recovered the AcH3 expression and osteoblast differentiation capacity in both situations. Together, our findings indicated that AcH3 might be a target for future studies focused on epigenetic-based therapies to treat bone diseases.


Asunto(s)
Adipocitos/metabolismo , Diferenciación Celular , Regulación hacia Abajo , Histonas/metabolismo , Osteoblastos/metabolismo , Osteoporosis/patología , Acetilación/efectos de los fármacos , Adipocitos/efectos de los fármacos , Adipogénesis/efectos de los fármacos , Animales , Diferenciación Celular/efectos de los fármacos , Técnicas de Cocultivo , Medios de Cultivo Condicionados/farmacología , Regulación hacia Abajo/efectos de los fármacos , Masculino , Modelos Biológicos , Osteoblastos/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Osteoporosis/metabolismo , Ratas Wistar
7.
Front Oral Health ; 1: 5, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-35047978
8.
Bio Protoc ; 10(4): e3534, 2020 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-33654758

RESUMEN

Since their discovery, mesenchymal stromal cells (MSCs) have received a lot of attention, mainly due to their self-renewal potential and multilineage differentiation capacity. For these reasons, MSCs are a useful tool in cell biology and regenerative medicine. In this article, we describe protocols to isolate MSCs from bone marrow (BM-MSCs) and adipose tissues (AT-MSCs), and methods to culture, characterize, and differentiate MSCs into osteoblasts, adipocytes, and chondrocytes. After the harvesting of cells from bone marrow by flushing the femoral diaphysis and enzymatic digestion of abdominal and inguinal adipose tissues, MSCs are selected by their adherence to the plastic tissue culture dish. Within 7 days, MSCs reach 70% confluence and are ready to be used in subsequent experiments. The protocols described here are easy to perform, cost-efficient, require minimal time, and yield a cell population rich in MSCs.

9.
Sci Rep ; 9(1): 13476, 2019 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-31530883

RESUMEN

Treatment of large bone defects is a challenging clinical situation that may be benefited from cell therapies based on regenerative medicine. This study was conducted to evaluate the effect of local injection of bone marrow-derived mesenchymal stromal cells (BM-MSCs) or adipose tissue-derived MSCs (AT-MSCs) on the regeneration of rat calvarial defects. BM-MSCs and AT-MSCs were characterized based on their expression of specific surface markers; cell viability was evaluated after injection with a 21-G needle. Defects measuring 5 mm that were created in rat calvaria were injected with BM-MSCs, AT-MSCs, or vehicle-phosphate-buffered saline (Control) 2 weeks post-defect creation. Cells were tracked by bioluminescence, and 4 weeks post-injection, the newly formed bone was evaluated by µCT, histology, nanoindentation, and gene expression of bone markers. BM-MSCs and AT-MSCs exhibited the characteristics of MSCs and maintained their viability after passing through the 21-G needle. Injection of both BM-MSCs and AT-MSCs resulted in increased bone formation compared to that in Control and with similar mechanical properties as those of native bone. The expression of genes associated with bone formation was higher in the newly formed bone induced by BM-MSCs, whereas the expression of genes involved in bone resorption was higher in the AT-MSC group. Cell therapy based on local injection of BM-MSCs or AT-MSCs is effective in delivering cells that induced a significant improvement in bone healing. Despite differences observed in molecular cues between BM-MSCs and AT-MSCs, both cells had the ability to induce bone tissue formation at comparable amounts and properties. These results may drive new cell therapy approaches toward complete bone regeneration.


Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Animales , Biomarcadores , Regeneración Ósea , Diferenciación Celular , Supervivencia Celular , Rastreo Celular , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Inmunohistoquímica , Inmunofenotipificación , Masculino , Trasplante de Células Madre Mesenquimatosas/métodos , Imagen Molecular , Osteogénesis , Ratas , Resultado del Tratamiento , Microtomografía por Rayos X
10.
Colloids Surf B Biointerfaces ; 184: 110513, 2019 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-31561047

RESUMEN

Wnt/ß-catenin signal transduction is involved in the homeostatic control of bone mass. It is well established that a titanium surface with nanotopography (Ti-Nano) favors osteoblast differentiation by modulating different signaling pathways. However, few studies have investigated the participation of the Wnt/ß-catenin pathway in the osteogenic effect of nanoscale topographies. In this study, we aimed to determine whether the Wnt/ß-catenin signaling pathway is involved in the elevated osteogenic potential of Ti-Nano. MC3T3-E1 cells were cultured on Ti-Nano and machined Ti (Ti-Control) for evaluation of the expression of Wnt/ß-catenin signaling pathway-related genes. Based on the results to real-time PCR, the Wnt receptor Fzd4 was selected and silenced by CRISPRi. The resulting cells were cultured on both Ti surfaces, and several events involved in osteoblast differentiation were evaluated. The results revealed that Fzd4 gene silencing, corresponding to negative modulation of Wnt/ß-catenin, inhibits expression of the osteoblast phenotype. It is worthy of note that this inhibitory effect on osteoblast differentiation was more pronounced in cells grown on Ti-Nano compared with those grown on Ti-Control. By disrupting Fzd4 gene expression, we have shown that the elevated osteogenic potential of Ti-Nano is due to activation of the Wnt/ß-catenin signaling pathway, which reveals a new mechanism to explain osteoblast differentiation induced by nanotopography. Such an understanding of the intracellular machinery involved in surface guiding of osteoblast fate may contribute to the development of smart biomaterials to modulate the process of implant osseointegration.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Nanopartículas/química , Osteoblastos/citología , Osteoblastos/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Titanio/farmacología , Vía de Señalización Wnt/efectos de los fármacos , Células 3T3 , Animales , Células Cultivadas , Ratones , Tamaño de la Partícula , Propiedades de Superficie
11.
J Biomed Mater Res A ; 107(6): 1303-1313, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30707485

RESUMEN

The major role of integrins is to mediate cell adhesion but some of them are involved in the osteoblasts-titanium (Ti) interactions. In this study, we investigated the participation of integrins in osteoblast differentiation induced by Ti with nanotopography (Ti-Nano) and with microtopography (Ti-Micro). By using a PCR array, we observed that, compared with Ti-Micro, Ti-Nano upregulated the expression of five integrins in mesenchymal stem cells, including integrin ß3, which increases osteoblast differentiation. Silencing integrin ß3, using CRISPR-Cas9, in MC3T3-E1 cells significantly reduced the osteoblast differentiation induced by Ti-Nano in contrast to the effect on T-Micro. Concomitantly, integrin ß3 silencing downregulated the expression of integrin αv, the parent chain that combines with other integrins and several components of the Wnt/ß-catenin and BMP/Smad signaling pathways, all involved in osteoblast differentiation, only in cells cultured on Ti-Nano. Taken together, our results showed the key role of integrin ß3 in the osteogenic potential of Ti-Nano but not of Ti-Micro. Additionally, we propose a novel mechanism to explain the higher osteoblast differentiation induced by Ti-Nano that involves an intricate regulatory network triggered by integrin ß3 upregulation, which activates the Wnt and BMP signal transductions. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 1303-1313, 2019.


Asunto(s)
Diferenciación Celular , Integrina beta3/metabolismo , Nanoestructuras/química , Osteoblastos/metabolismo , Titanio/química , Vía de Señalización Wnt , Animales , Línea Celular , Masculino , Ratones , Osteoblastos/citología , Ratas , Ratas Wistar
12.
Regen Med ; 14(12): 1107-1119, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31960753

RESUMEN

Aim: The aim of this study was to investigate the effect of local injection of osteoblasts differentiated from bone marrow (BM-OB) or adipose tissue (AT-OB) mesenchymal stromal cells on bone tissue formation. Materials & methods: Defects were created in rat calvaria and injected with BM-OB or AT-OB and phosphate-buffered saline without cells were injected as control. Bone formation was evaluated 4 weeks postinjection. Results: Injection of BM-OB or AT-OB resulted in higher bone formation than that obtained with control. The bone tissue induced by cell injections exhibited similar mechanical properties as those of pristine calvarial bone, and its molecular cues suggested the occurrence of a remodeling process. Conclusion: Results of this study demonstrated that cell therapy with osteoblasts induced significant bone formation that exhibited the same quality as that of pre-existent bone.


Asunto(s)
Células de la Médula Ósea/citología , Regeneración Ósea , Huesos/citología , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas/citología , Osteoblastos/citología , Animales , Huesos/lesiones , Diferenciación Celular , Masculino , Osteogénesis , Ratas , Ratas Wistar , Ingeniería de Tejidos/métodos
13.
J Cell Physiol ; 234(1): 749-756, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-30076723

RESUMEN

Quantitative real-time polymerase chain reaction (qRT-PCR) is a powerful tool to evaluate gene expression, but its accuracy depends on the choice and stability of the reference genes used for normalization. In this study, we aimed to identify reference genes for studies on osteoblasts derived from rat bone marrow mesenchymal stem cells (bone marrow osteoblasts), osteoblasts derived from newborn rat calvarial (calvarial osteoblasts), and rat osteosarcoma cell line UMR-106. The osteoblast phenotype was characterized by ALP activity and extracellular matrix mineralization. Thirty-one candidates for reference genes from a Taqman® array were assessed by qRT-PCR, and their expressions were analyzed by five different approaches. The data showed that several of the most traditional reference genes, such as Actb and Gapdh, were inadequate for normalization and that the experimental conditions may affect gene stability. Eif2b1 was frequently identified among the best reference genes in bone marrow osteoblasts, calvarial osteoblasts, and UMR-106 osteoblasts. Selected stable and unstable reference genes were used to normalize the gene expression of Runx2, Alp, and Oc. The data showed statistically significant differences in the expression of these genes depending on the stability of the reference gene used for normalization, creating a bias that may induce incorrect assumptions in terms of osteoblast characterization of these cells. In conclusion, our study indicates that a rigorous selection of reference genes is a key step in qRT-PCR studies in osteoblasts to generate precise and reliable data.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Expresión Génica/genética , Células Madre Mesenquimatosas/metabolismo , Osteoblastos/citología , Animales , Animales Recién Nacidos , Línea Celular , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Endopeptidasas/genética , Endopeptidasas/metabolismo , Células Madre Mesenquimatosas/citología , Osteoblastos/metabolismo , Ratas , Reacción en Cadena en Tiempo Real de la Polimerasa , Estándares de Referencia
14.
J Cell Biochem ; 119(10): 8441-8449, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29932237

RESUMEN

Among bone morphogenetic proteins (BMPs), BMP-9 has been described as one with higher osteogenic potential. Here, we aimed at evaluating the effect of BMP-9 on the osteoblast differentiation of cells grown on titanium (Ti) with nanotopography, a well-known osseoinductive surface. MC3T3-E1 cells were grown either in absence or presence of BMP-9 (20 nM) on Ti with nanotopography (Ti-Nano) or machined Ti (Ti-Machined) for up to 21 days to evaluate the gene expression of RUNX2, osterix, osteocalcin, bone sialoprotein, SMAD6 and SMAD4, protein expression of SMAD4, ALP activity and extracellular matrix mineralization. As expected BMP-9 increased osteoblast differentiation irrespective of Ti surface topography; however, the cells grown on Ti-Nano were more responsible to BMP-9 compared with cells grown on Ti-machined. This could be, at least in part, due to the fact that Ti-Nano may act on both ways, by increasing the activation (SMAD4) and decreasing the inhibition (SMAD6) of the signaling pathway triggered by BMP-9, while Ti-Machined only decrease the inhibition (SMAD6) of this pathway. In conclusion, the combination of the osteogenic potential of BMP-9 with the osseoinductive capacity of Ti-Nano could be a promising strategy to favor the osseointegration of Ti implants.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Factor 2 de Diferenciación de Crecimiento/farmacología , Nanoporos/ultraestructura , Osteoblastos/citología , Titanio/química , Titanio/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Análisis de Varianza , Animales , Adhesión Celular/fisiología , Línea Celular , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Expresión Génica , Proteínas de la Membrana/genética , Ratones , Osteoblastos/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Proteína Smad4/metabolismo , Proteína smad6/metabolismo , Propiedades de Superficie
15.
Eur J Oral Sci ; 125(5): 355-360, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28805275

RESUMEN

Osteoblasts and adipocytes coexist in the implantation site and affect the process of titanium (Ti) osseointegration. As extracellular signal-regulated kinases 1/2 (ERK1/2) are involved in osteogenesis and adipogenesis, the aim of our study was to investigate if the effects of Ti surface topography on osteoblast and adipocyte differentiation are modulated by ERK1/2. The experiments were conducted based on the effect of the ERK1/2 inhibitor, PD98059, on mesenchymal stem cells (MSCs) grown under osteogenic and adipogenic conditions on Ti with nanotopography (Ti-Nano) or on machined Ti (Ti-Machined). The results showed that, in general, ERK1/2 inhibition favored osteoblast and adipocyte differentiation of MSCs grown on Ti-Machined. In MSCs grown on Ti-Nano, ERK1/2 inhibition upregulated the expression of alkaline phosphatase and osteocalcin and reduced extracellular matrix mineralization. In terms of adipocyte differentiation, ERK1/2 inhibition elicited similar MSC responses to Ti-Nano and Ti-Machined, upregulating gene expression of adipocyte markers without affecting lipid accumulation. Our results indicate that, under osteogenic and adipogenic conditions, the responses of MSCs to Ti surface topography in terms of osteogenesis and adipogenesis are dependent on ERK1/2. Thus, a precise modulation of ERK1/2 expression and activity induced by surface topography could be a good strategy to drive the process of implant osseointegration.


Asunto(s)
Adipocitos/metabolismo , Diferenciación Celular/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/farmacología , Osteoblastos/metabolismo , Titanio/química , Animales , Células Cultivadas , Flavonoides/farmacología , Expresión Génica , Masculino , Microscopía Electrónica de Rastreo , Proteína Quinasa 3 Activada por Mitógenos/antagonistas & inhibidores , Ratas , Ratas Wistar , Reacción en Cadena en Tiempo Real de la Polimerasa , Propiedades de Superficie
16.
J Biomed Mater Res A ; 105(10): 2783-2788, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28643442

RESUMEN

Several studies have shown the positive effects of Ti either with nanotopography or coated with collagen on osteoblast differentiation. Thus, we hypothesized that the association of nanotopography with collagen may increase the in vitro osteogenesis on Ti surface. Ti discs with nanotopography with or without collagen coating were characterized by scanning electron microscopy and atomic force microscopy. Rat calvaria-derived osteoblastic cells were cultured on both Ti surfaces for up to 14 days and the following parameters were evaluated: cell proliferation, alkaline phosphatase (ALP) activity, extracellular matrix mineralization, protein expression of bone sialoprotein (BSP) and osteopontin (OPN), and gene expression of collagen type 1a (Coll1a), runt-related transcription factor 2 (Runx2), osterix (OSX), osteocalcin (OC), Ki67, Survivin, and Bcl2-associated X protein (BAX). Surface characterization evidenced that collagen coating did not alter the nanotopography. Collagen coating increased cell proliferation, ALP activity, extracellular matrix mineralization, and Coll1a, OSX, OC, and BAX gene expression. Also, OPN and BSP proteins were strongly detected in cultures grown on both Ti surfaces. In conclusion, our results showed that the combination of nanotopography with collagen coating stimulates the early, intermediate, and final events of the in vitro osteogenesis and may be considered a potential approach to promote osseointegration of Ti implants. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2783-2788, 2017.


Asunto(s)
Materiales Biocompatibles Revestidos/química , Colágeno/química , Nanoestructuras/química , Osteoblastos/citología , Osteogénesis , Titanio/química , Animales , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Osteoblastos/metabolismo , Ratas , Ratas Wistar , Propiedades de Superficie
17.
Calcif Tissue Int ; 101(3): 312-320, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28451713

RESUMEN

One of the tissue engineering strategies to promote bone regeneration is the association of cells and biomaterials. In this context, the aim of this study was to evaluate if cell source, either from bone marrow or adipose tissue, affects bone repair induced by osteoblastic cells associated with a membrane of poly(vinylidene-trifluoroethylene)/barium titanate (PVDF-TrFE/BT). Mesenchymal stem cells (MSC) were isolated from rat bone marrow and adipose tissue and characterized by detection of several surface markers. Also, both cell populations were cultured under osteogenic conditions and it was observed that MSC from bone marrow were more osteogenic than MSC from adipose tissue. The bone repair was evaluated in rat calvarial defects implanted with PVDF-TrFE/BT membrane and locally injected with (1) osteoblastic cells differentiated from MSC from bone marrow, (2) osteoblastic cells differentiated from MSC from adipose tissue or (3) phosphate-buffered saline. Luciferase-expressing osteoblastic cells derived from bone marrow and adipose tissue were detected in bone defects after cell injection during 25 days without difference in luciferin signal between cells from both sources. Corroborating the in vitro findings, osteoblastic cells from bone marrow combined with the PVDF-TrFE/BT membrane increased the bone formation, whereas osteoblastic cells from adipose tissue did not enhance the bone repair induced by the membrane itself. Based on these findings, it is possible to conclude that, by combining a membrane with cells in this rat model, cell source matters and that bone marrow could be a more suitable source of cells for therapies to engineer bone.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas/métodos , Osteoblastos/citología , Cráneo , Ingeniería de Tejidos/métodos , Tejido Adiposo/citología , Animales , Compuestos de Bario , Materiales Biocompatibles , Células de la Médula Ósea/citología , Diferenciación Celular , Masculino , Células Madre Mesenquimatosas/citología , Polivinilos , Ratas , Ratas Wistar , Titanio
18.
J Biomed Mater Res A ; 105(2): 419-423, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27682446

RESUMEN

The ability of Biosilicate® with two crystalline phases (BioS-2P) to drive osteoblast differentiation encourages the investigation of the cellular mechanisms involved in this process. Then, the aim of our study was to analyze the large-scale gene expression of osteoblasts grown on BioS-2P compared with Bioglass® 45S5 (45S5). Osteoblasts differentiated from rat bone marrow mesenchymal stem cells were cultured under osteogenic conditions on BioS-2P, 45S5 and polystyrene (control). After 10 days, the expression of 23,794 genes was analyzed using mRNA Sequencing and the data were validated by real-time PCR. The BioS-2P exhibited 5 genes upregulated and 3 downregulated compared with 45S5. Compared with control, BioS-2P upregulated 15 and downregulated 11 genes, while 45S5 upregulated 25 and downregulated 21 genes. Eight genes were commonly upregulated and 4 downregulated by both bioactive glasses. In conclusion, our results demonstrated that bioactive glasses affect the gene expression profiling of osteoblasts. Most of the regulated genes by both BioS-2P and 45S5 are associated with the process of mineralization highlighting their osteostimulation property that is, at least in part, derived from the ability to modulate the intracellular machinery to promote osteoblast genotype expression. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 419-423, 2017.


Asunto(s)
Calcificación Fisiológica/efectos de los fármacos , Cerámica/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Osteoblastos/metabolismo , Animales , Perfilación de la Expresión Génica , Masculino , Osteoblastos/citología , Ratas , Ratas Wistar , Propiedades de Superficie
19.
J Biomater Sci Polym Ed ; 27(13): 1369-79, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27312544

RESUMEN

The poly(vinylidene-trifluoroethylene)/barium titanate (PVDF) membrane enhances in vitro osteoblast differentiation and in vivo bone repair. Here, we hypothesized that this higher bone repair could be also due to bone resorption inhibition mediated by a microRNA (miR)/RANKL circuit. To test our hypothesis, the large-scale miR expression of bone tissue grown on PVDF and polytetrafluoroethylene (PTFE) membranes was evaluated to identify potential RANKL-targeted miRs modulated by PVDF. The animal model used was rat calvarial defects implanted with either PVDF or PTFE. At 4 and 8 weeks, the bone tissue grown on membranes was submitted to a large-scale analysis of miRs by microarray. The expression of miR-34a and some of its targets, including RANKL, were evaluated by real-time polimerase chain reaction and osteoclast activity was detected by tartrate-resistant acid phosphatase (TRAP) staining. Among more than 250 miRs, twelve, including miR-34a, were simultaneously higher expressed (≥2 fold) at 4 and 8 weeks on PVDF. The higher expression of miR-34a was concomitant with a reduced expression of all its evaluated targets, including RANKL. Additionally, more TRAP-positive cells were observed in bone tissue grown on PTFE compared with PVDF in both time points. In conclusion, our results suggest that the higher bone formation induced by PVDF could be, at least in part, triggered by a miR-34a increase and RANKL decrease, which may inhibit osteoclast differentiation and activity, and bone resorption.


Asunto(s)
Compuestos de Bario/química , Regeneración Ósea , Hidrocarburos Fluorados/química , MicroARNs/metabolismo , Osteoblastos/citología , Ligando RANK/metabolismo , Titanio/química , Compuestos de Vinilo/química , Animales , Células de la Médula Ósea/citología , Células de la Médula Ósea/metabolismo , Huesos/metabolismo , Diferenciación Celular , Expresión Génica , Membranas Artificiales , Osteoblastos/metabolismo , Osteogénesis , Ratas Wistar
20.
J Oral Implantol ; 42(3): 240-7, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26390195

RESUMEN

Clinical success of implant therapy is directly related to titanium (Ti) surface properties and the quality of bone tissue. The treatment of Ti implants with H2SO4/H2O2 is a feasible, reproducible, and low-cost technique to create surface nanotopography (Ti-Nano). As this nanotopography induces osteoblast differentiation, we hypothesized that it may affect bone response to Ti. Thus, this study was designed to evaluate the bone response to a machined Ti implant treated with H2SO4/H2O2 to generate Ti-Nano and to compare it with a commercially available microtopographic Ti implant (Ti-Porous). Implants were placed in rabbit tibias and evaluated after 2 and 6 weeks, and the bone tissue formed around them was assessed by microtomography to record bone volume, bone surface, specific bone surface, trabecular number, trabecular thickness, and trabecular separation. Undecalcified histological sections were used to determine the percentages of bone-to-implant contact, bone area formed between threads, and bone area formed in the mirror area. At the end of 6 weeks, the removal torque was evaluated using a digital torque gauge. The results showed bone formation in close contact with both Ti-Nano and Ti-Porous implants without relevant morphological and morphometric differences, in addition to a similar removal torque irrespective of surface topography. In conclusion, our results have shown that a simple and low-cost method using H2SO4/H2O2 is highly efficient for creating nanotopography on Ti surfaces, which elicits a similar bone response compared with microtopography presented in a commercially available Ti implant.


Asunto(s)
Implantes Dentales , Oseointegración , Titanio , Animales , Peróxido de Hidrógeno , Microscopía Electrónica de Rastreo , Conejos , Propiedades de Superficie , Torque
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...