Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38457039

RESUMEN

Sepsis/septic shock activates the sympathetic nervous system (SNS) to deal with the infection stress. However, an imbalanced or maladaptive response due to excessive or uncontrolled activation characterizes autonomic dysfunction. Our hypothesis was that reducing this excessive activation of the autonomic nervous system would impact positively in sepsis. Using ganglionic blockers as a pharmacological approach, the main aim of the present report was to assess the role of ganglionic transmission in the vascular dysfunction associated with sepsis.Sepsis was induced in rats by cecal ligation and puncture (CLP). One hour after CLP surgery, rats were treated subcutaneously with hexamethonium (15 mg/kg; ganglionic blocker), pentolinium (5 mg/kg; a blocker with a higher selectivity for sympathetic ganglia compared to hexamethonium), or vehicle (PBS). Basal blood pressure and the response to adrenergic agonists were evaluated at 6 and 24 h after CLP surgery. Reactivity to vasoconstrictors, nitric oxide (NO) synthase 2 (NOS-2) expression, IL-1 and TNF plasma levels, and density of α1 adrenergic receptors were evaluated in the aorta 24 h after CLP.Septic shock resulted in hypotension and hyporesponsiveness to norepinephrine and phenylephrine, increased plasma cytokine levels and NOS-2 expression in the aorta, and decreased α1 receptor density in the same vessel. Pentolinium but not hexamethonium recovered responsiveness and α1 adrenergic receptor density in the aorta. Both blockers normalized the in vivo response to vasoconstrictors, and reduced plasma IL-1 and NOx levels and NOS-2 expression in the aorta.Blockade of ganglionic sympathetic transmission reduced the vascular dysfunction in experimental sepsis. This beneficial effect seems to be, at least in part, due to the preservation of α1 adrenergic receptor density and to reduced NOS-2 expression and may lead to adjuvant ways to treat human sepsis.

2.
Intensive Care Med Exp ; 12(1): 2, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38194181

RESUMEN

BACKGROUND: Hemorrhagic shock (HS), which causes insufficient tissue perfusion, can result in multiple organ failure (MOF) and death. This study aimed to evaluate whether doxycycline (DOX) protects cardiovascular, kidney, and liver tissue from damage in a rat model of HS. Immediately before the resuscitation, DOX (10 mg/kg; i.v.) was administered, and its protective effects were assessed 24 h later. Mean arterial pressure, renal blood flow, heart rate, vasoactive drug response, and blood markers such as urea, creatinine, AST, ALT, CPK, CPR, and NOx levels were determined. RESULTS: We showed that DOX has a significant effect on renal blood flow and on urea, creatinine, AST, ALT, CPK, and NOx. Morphologically, DOX reduced the inflammatory process in the liver tissue. CONCLUSIONS: We conclude that DOX protects the liver and kidney against injury and dysfunction in a HS model and could be a strategy to reduce organ damage associated with ischemia-and-reperfusion injury.

3.
Eur J Pharmacol ; 959: 176092, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37797676

RESUMEN

Sepsis is a severe condition secondary to dysregulated host response to infection leading to tissue damage and organ dysfunction. Cannabinoid CB2 receptor has modulatory effects on the immune response. Therefore, this study investigated the effects of a cannabinoid CB2 receptor agonist on the local and systemic inflammatory process associated with pneumonia-induced sepsis. Pneumonia-induced sepsis was induced in mice by intratracheal inoculation of Klebsiella pneumoniae. Tissue and bronchoalveolar lavage (BAL) were collected 6, 24, or 48 h after surgery. Mice were treated with CB2 agonist (AM1241, 0.3 and 3 mg/kg, i.p.) and several parameters of inflammation were evaluated 24 h after sepsis induction. Polymorphonuclear cell migration to the infectious focus peaked 24 h after pneumonia-induced sepsis induction in male and female animals. Septic male mice presented a significant reduction of cannabinoid CB2 receptor density in the lung tissue after 24 h, which was not observed in females. CB2 expression in BAL macrophages was also reduced in septic animals. Treatment of septic mice with AM1241 reduced cell migration, local infection, myeloperoxidase activity, protein extravasation, and NOS-2 expression in the lungs. In addition, the treatment reduced plasma IL-1ß, increased IL-10 and reduced the severity and mortality of septic animals. These results suggest that AM1241 promotes an interesting balance in the inflammatory response, maintaining lung function and preventing organ injury. Therefore, cannabinoid CB2 receptors are potential targets to control the excessive inflammatory process that occurs in severe conditions, and agonists of these receptors can be considered promising adjuvants in pneumonia-induced sepsis treatment.


Asunto(s)
Cannabinoides , Neumonía , Sepsis , Femenino , Ratones , Masculino , Animales , Agonistas de Receptores de Cannabinoides/farmacología , Neumonía/tratamiento farmacológico , Cannabinoides/farmacología , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Receptores de Cannabinoides , Sepsis/complicaciones , Sepsis/tratamiento farmacológico , Sepsis/metabolismo , Receptor Cannabinoide CB2 , Receptor Cannabinoide CB1
4.
Clin Sci (Lond) ; 135(20): 2341-2356, 2021 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-34622918

RESUMEN

Renal vascular reactivity to vasoconstrictors is preserved in sepsis in opposition to what happens in the systemic circulation. We studied whether this distinct behavior was related to α1 adrenergic receptor density, G protein-coupled receptor kinase 2 (GRK2) and the putative role of nitric oxide (NO). Sepsis was induced in female mice by cecal ligation and puncture (CLP). Wildtype mice were treated with prazosin 12 h after CLP or nitric oxide synthase 2 (NOS-2) inhibitor, 30 min before and 6 and 12 h after CLP. In vivo experiments and biochemistry assays were performed 24 h after CLP. Sepsis decreased the systemic mean arterial pressure (MAP) and the vascular reactivity to phenylephrine. Sepsis also reduced basal renal blood flow which was normalized by treatment with prazosin. Sepsis led to a substantial decrease in GRK2 level associated with an increase in α1 adrenergic receptor density in the kidney. The disappearance of renal GRK2 was prevented in NOS-2-KO mice or mice treated with 1400 W. Treatment of non-septic mice with an NO donor reduced GRK2 content in the kidney. Therefore, our results show that an NO-dependent reduction in GRK2 level in the kidney leads to the maintenance of a normal α1 adrenergic receptor density. The preservation of the density and/or functionality of this receptor in the kidney together with a higher vasoconstrictor tonus in sepsis lead to vasoconstriction. Thus, the increased concentration of vasoconstrictor mediators together with the preservation (and even increase) of the response to them may help to explain sepsis-induced acute kidney injury.


Asunto(s)
Lesión Renal Aguda/etiología , Quinasa 2 del Receptor Acoplado a Proteína-G/metabolismo , Riñón/metabolismo , Sepsis/complicaciones , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/patología , Lesión Renal Aguda/fisiopatología , Animales , Presión Arterial , Modelos Animales de Enfermedad , Femenino , Riñón/patología , Ratones Endogámicos C57BL , Ratones Noqueados , Miocardio/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , Receptores Adrenérgicos alfa 1/metabolismo , Circulación Renal , Sepsis/metabolismo , Sepsis/fisiopatología , Factores de Tiempo
5.
Int J Med Sci ; 17(14): 2133-2146, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32922174

RESUMEN

The SARS-CoV-2 spread quickly across the globe. The World Health Organization (WHO) on March 11 declared COVID-19 a pandemic. The mortality rate, hospital disorders and incalculable economic and social damages, besides the unproven efficacy of the treatments evaluated against COVID-19, raised the need for immediate control of this disease. Therefore, the current study employed in silico tools to rationally identify new possible SARS-CoV-2 main protease (Mpro) inhibitors. That is an enzyme conserved among the coronavirus species; hence, the identification of an Mpro inhibitor is to make it a broad-spectrum drug. Molecular docking studies described the binding sites and the interaction energies of 74 Mpro-ligand complexes deposited in the Protein Data Bank (PDB). A structural similarity screening was carried out in order to identify possible Mpro ligands that show additional pharmacological properties against COVID-19. We identified 59 hit compounds and among them, melatonin stood out due to its prominent immunomodulatory and anti-inflammatory activities; it can reduce oxidative stress, defence cell mobility and efficiently combat the cytokine storm and sepsis. In addition, melatonin is an inhibitor of calmodulin, an essential intracellular component to maintain angiotensin-converting enzyme 2 (ACE-2) on the cell surface. Interestingly, one of the most promising hits in our docking study was melatonin. It revealed better interaction energy with Mpro compared to ligands in complexes from PDB. Consequently, melatonin can have response potential in early stages for its possible effects on ACE-2 and Mpro, although it is also promising in more severe stages of the disease for its action against hyper-inflammation. These results definitely do not confirm antiviral activity, but can rather be used as a basis for further preclinical and clinical trials.


Asunto(s)
Infecciones por Coronavirus/tratamiento farmacológico , Descubrimiento de Drogas , Melatonina/farmacología , Neumonía Viral/tratamiento farmacológico , Proteínas no Estructurales Virales/antagonistas & inhibidores , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Betacoronavirus/metabolismo , Betacoronavirus/patogenicidad , COVID-19 , Proteasas 3C de Coronavirus , Infecciones por Coronavirus/virología , Cisteína Endopeptidasas , Humanos , Factores Inmunológicos/farmacología , Factores Inmunológicos/uso terapéutico , Melatonina/uso terapéutico , Simulación del Acoplamiento Molecular , Pandemias , Neumonía Viral/virología , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/uso terapéutico , SARS-CoV-2 , Tratamiento Farmacológico de COVID-19
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...