Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
ACS Omega ; 8(44): 41969-41976, 2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-37970010

RESUMEN

MXenes are of much interest because of their electrochemical, electronic, and surface chemical properties that arise from their structure and stoichiometry. The integrity and the nature of the terminal groups on the basal planes of MXene sheets depend strongly on the method used to etch the parent MAX (M = transition metal, A = Al, X = C, N, B) compound. Aluminum removal typically involves a high concentration of aqueous HF, HCl/LiF mixtures, or fluoride solutions of strong acids. HF etching is problematic because it leaves insoluble AlF3 in the product, degrades the crystallinity of the nanosheets, and results in the termination of the basal planes with F, O, or OH groups. Here, we demonstrate the use of HF at a low concentration in tandem with a chelating agent, N,N'-dihydroxyoctanediamide (suberohydroxamic acid), to selectively etch the archetypical MAX compound Ti3AlC2 at room temperature. X-ray absorption spectroscopy (XAS) of the etched materials shows that the carbide nature of bonding in the parent MAX structure is retained in the MXene layers. The stability of the MXene in aqueous suspensions is also significantly improved relative to MXene products made by etching in concentrated HF solutions.

3.
Inorg Chem ; 62(3): 1113-1121, 2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36351259

RESUMEN

Atomically dispersed organometallic clusters can provide well-defined nuclearity of active sites for both fundamental studies as well as new regimes of activity and selectivity in chemical transformations. More recently, dinuclear clusters adsorbed onto solid surfaces have shown novel catalytic properties resulting from the synergistic effect of two metal centers to anchor different reactant species. Difficulty in synthesizing, stabilizing, and characterizing isolated atoms and clusters without agglomeration challenges allocating catalytic performance to atomic structure. Here, we explore the stability of dinuclear rhodium and iridium clusters adsorbed onto layered titanate and niobate supports using molecular precursors. Both systems maintain their nuclearity when characterized using aberration-corrected high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM). Statistical analysis of HAADF-STEM images revealed that rhodium and iridium dimers had mean cluster-to-cluster distances very similar to what is expected from a random distribution of atoms over a large area, indicating that they are dispersed without aggregation. The stability of dinuclear rhodium clusters supported on titanate nanosheets was also investigated by X-ray absorption fine structure (EXAFS), DRIFTS, and first-principles calculations. Both X-ray absorption spectroscopy and HAADF-STEM simulations, guided by density functional theory (DFT)-optimized structure models, suggested that rhodium dimers adsorb onto the nanosheets in an end-on binding mode that is stable up to 100 °C under reducing conditions. This study highlights that crystalline nanosheets derived from layered metal oxides can be used as model supports to selectively stabilize dinuclear clusters, which could have implications for heterogeneous catalysis.


Asunto(s)
Rodio , Rodio/química , Iridio/química , Óxidos/química , Catálisis
4.
Chem Soc Rev ; 47(7): 2401-2430, 2018 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-29479626

RESUMEN

Soft chemical reactions such as ion-exchange and acid-base reactions have been extensively investigated to synthesize novel metastable layered inorganic solids, to exfoliate them into individual nanosheets, and to re-assemble them as thin films and nanocomposite materials. These reactions proceed at relatively low temperature and enable the synthesis of a rich variety of structures by stepwise reactions. In recent years, the toolbox of soft chemical reactions has been utilized to rationally design and tailor the properties of functional layered transition metal oxides. Layer-by-layer assembly and intercalation chemistry have provided insight into covalent interactions that stabilize oxide-supported nanoparticle catalysts. In addition, topochemical reactions have been utilized to tune the compositions of layered perovskite oxides in order to break inversion symmetry, resulting in piezoelectric and ferroelectric properties. This review focuses on the use of soft chemical approaches to design functional layered transition metal oxides with tunable properties. Soft chemical reactions enable the design of functional materials for diverse applications that include artificial photosynthesis, catalysis, energy storage, fuel cells, optical sensors, ferroics, and high-k dielectrics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...