Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nanophotonics ; 13(16): 2937-2949, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39006137

RESUMEN

Thanks to their giant, yet tunable, Q-factor resonances, all-dielectric metasurfaces supporting the quasi-bound states in the continuum (q-BIC) resonances are well-suited to provide a promising platform for quantum-coherent light-matter interactions. Yet, the strong coupling regime, characterized by the hybrid light-matter states - polaritons, has not yet been fully explored in the mid-infrared regime. This paper investigates the parameter space of vibrational strong coupling (VSC) between material and metasurface cavities supporting q-BIC resonances in the mid-infrared spectral range. We outline the effects of transition dipole strength, damping rate, and the number of molecules coupled to a single cavity, as well as the cavity damping rates, to understand their respective impacts on VSC. By tuning the Q-factor of the metasurface and material parameters, a new transition light-matter coupling zone is introduced, bridging the gap between weak and strong coupling, where polaritons form but their linewidths prohibit their spectral identification. The study further identifies the effects of cavity linewidth on polariton peak separability in strongly coupled systems, highlighting that the cavities with smaller nonradiative losses and narrower linewidths facilitate better polariton separability. Moreover, we found that matching cavity and material loss, satisfying the critical strong coupling condition, enhances the coupling strength between cavity and material. Overall, these findings can guide the design of photonic cavities suited for VSC experiments, contributing to the burgeoning fields of polaritonic chemistry, light-mediated modulation of chemical reactivity, and highly sensitive molecular spectroscopy.

2.
Adv Mater ; 35(28): e2301208, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37186328

RESUMEN

Label-free and nondestructive mid-infrared vibrational hyperspectral imaging is an essential tissue analysis tool, providing spatially resolved biochemical information critical to understanding physiological and pathological processes. However, the chemically complex and spatially heterogeneous composition of tissue specimens and the inherently weak interaction of infrared light with biomolecules limit the analytical performance of infrared absorption spectroscopy. Here, an advanced mid-infrared spectrochemical tissue imaging modality is introduced using metasurfaces that support strong surface-localized electromagnetic fields to capture quantitative molecular maps of large-area murine brain tissue sections. The approach leverages polarization-multiplexed multi-resonance plasmonic metasurfaces to simultaneously detect various functional biomolecules. The surface-enhanced mid-infrared spectral imaging method eliminates the non-specific effects of bulk tissue morphology on quantitative spectral analysis and improves chemical selectivity. This study shows that metasurface enhancement increases the retrieval of amide I and II bands associated with protein secondary structures. Moreover, it is demonstrated that plasmonic metasurfaces enhance the chemical contrast in infrared images and enable detection of ultrathin tissue regions that are not otherwise visible to conventional mid-infrared spectral imaging. While this work uses murine brain tissue sections, the chemical imaging method is well-suited for other tissue types, which broadens its potential impact for translational research and clinical histopathology.


Asunto(s)
Diagnóstico por Imagen , Proteínas , Animales , Ratones , Espectrofotometría Infrarroja/métodos , Proteínas/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA