Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMC Med ; 22(1): 140, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38528552

RESUMEN

BACKGROUND: It is well-established that parental obesity is a strong risk factor for offspring obesity. Further, a converging body of evidence now suggests that maternal weight profiles may affect the developing offspring's brain in a manner that confers future obesity risk. Here, we investigated how pre-pregnancy maternal weight status influences the reward-related striatal areas of the offspring's brain during in utero development. METHODS: We used diffusion tensor imaging to quantify the microstructure of the striatal brain regions of interest in neonates (N = 116 [66 males, 50 females], mean gestational weeks at birth [39.88], SD = 1.14; at scan [43.56], SD = 1.05). Linear regression was used to test the associations between maternal pre-pregnancy body mass index (BMI) and infant striatal mean diffusivity. RESULTS: High maternal pre-pregnancy BMI was associated with higher mean MD values in the infant's left caudate nucleus. Results remained unchanged after the adjustment for covariates. CONCLUSIONS: In utero exposure to maternal adiposity might have a growth-impairing impact on the mean diffusivity of the infant's left caudate nucleus. Considering the involvement of the caudate nucleus in regulating eating behavior and food-related reward processing later in life, this finding calls for further investigations to define the prognostic relevance of early-life caudate nucleus development and weight trajectories of the offspring.


Asunto(s)
Imagen de Difusión Tensora , Obesidad , Masculino , Lactante , Recién Nacido , Embarazo , Femenino , Humanos , Índice de Masa Corporal , Obesidad/complicaciones , Factores de Riesgo , Madres
2.
Hum Brain Mapp ; 43(16): 4984-4994, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36098477

RESUMEN

Diffusion tensor imaging (DTI) has provided great insights into the microstructural features of the developing brain. However, DTI images are prone to several artifacts and the reliability of DTI scalars is of paramount importance for interpreting and generalizing the findings of DTI studies, especially in the younger population. In this study, we investigated the intrascan test-retest repeatability of four DTI scalars: fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) in 5-year-old children (N = 67) with two different data preprocessing approaches: a volume censoring pipeline and an outlier replacement pipeline. We applied a region of interest (ROI) and a voxelwise analysis after careful quality control, tensor fitting and tract-based spatial statistics. The data had three subsets and each subset included 31, 32, or 33 directions thus a total of 96 unique uniformly distributed diffusion encoding directions per subject. The repeatability of DTI scalars was evaluated with intraclass correlation coefficient (ICC(3,1)) and the variability between test and retest subsets. The results of both pipelines yielded good to excellent (ICC(3,1) > 0.75) reliability for most of the ROIs and an overall low variability (<10%). In the voxelwise analysis, FA and RD had higher ICC(3,1) values compared to AD and MD and the variability remained low (<12%) across all scalars. Our results suggest high intrascan repeatability in pediatric DTI and lend confidence to the use of the data in future cross-sectional and longitudinal studies.


Asunto(s)
Encéfalo , Imagen de Difusión Tensora , Humanos , Niño , Preescolar , Imagen de Difusión Tensora/métodos , Reproducibilidad de los Resultados , Estudios Transversales , Anisotropía , Encéfalo/diagnóstico por imagen
3.
Hum Brain Mapp ; 43(15): 4609-4619, 2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-35722945

RESUMEN

The corpus callosum (CC) is the largest fiber tract in the human brain, allowing interhemispheric communication by connecting homologous areas of the two cerebral hemispheres. In adults, CC size shows a robust allometric relationship with brain size, with larger brains having larger callosa, but smaller brains having larger callosa relative to brain size. Such an allometric relationship has been shown in both males and females, with no significant difference between the sexes. But there is some evidence that there are alterations in these allometric relationships during development. However, it is currently not known whether there is sexual dimorphism in these allometric relationships from birth, or if it only develops later. We study this in neonate data. Our results indicate that there are already sex differences in these allometric relationships in neonates: male neonates show the adult-like allometric relationship between CC size and brain size; however female neonates show a significantly more positive allometry between CC size and brain size than either male neonates or female adults. The underlying cause of this sexual dimorphism is unclear; but the existence of this sexual dimorphism in neonates suggests that sex-differences in lateralization have prenatal origins.


Asunto(s)
Cuerpo Calloso , Caracteres Sexuales , Adulto , Encéfalo/diagnóstico por imagen , Cuerpo Calloso/diagnóstico por imagen , Femenino , Humanos , Recién Nacido , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...