Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 231
Filtrar
1.
Can J Cardiol ; 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38604339

RESUMEN

Heart failure with preserved ejection fraction (HFpEF) refers to a clinical condition in which the signs of heart failure, such as pulmonary congestion, peripheral edema, and increased natriuretic peptide levels, are present despite normal ejection fractions and the absence of other causes (eg, pericardial disease). The ejection fraction cutoff for the definition of HFpEF has varied in the past, but recent society guidelines have settled on a consensus of 50%. HFpEF is particularly common in the elderly population. The aim of this narrative review is to summarize the available literature regarding HFpEF in elderly patients in terms of evidence for the age dependence, specific clinical features, and underlying mechanisms. In the clinical arena, we review the epidemiology, discuss distinct clinical phenotypes typically seen in elderly patients, the importance of frailty, the role of biomarkers, and the role of medical therapies (including sodium-glucose cotransport protein 2 inhibitors, renin-angiotensin-aldosterone system blockers, angiotensin receptor/neprilysin inhibitors, diuretics, and ß-adrenergic receptor blockers). We then go on to discuss the basic mechanisms implicated in HFpEF, including cellular senescence, fibrosis, inflammation, mitochondrial dysfunction, enhanced production of reactive oxygen species, abnormal cellular calcium handling, changes in microRNA signalling, insulin resistance, and sex hormone changes. Finally, we review knowledge gaps and promising areas of future investigation. Improved understanding of the specific clinical manifestations of HFpEF in elderly individuals and of the fundamental mechanisms that contribute to the age-related risk of HFpEF promises to lead to novel diagnostic and treatment approaches that will improve outcomes for this common cardiac disorder in a vulnerable population.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38490728

RESUMEN

Validated glass bead sterilization protocols to effectively sterilize rodent surgical instruments after bacterial exposure (for example, cecal contamination) are lacking. To refine current approaches, we added either a multienzyme detergent, neutral pH detergent, or chlorhexidine scrub step before glass bead sterilization of forceps or needle drivers exposed to cecal contents. We exposed sets of forceps and needle drivers to cecal contents, which were then air dried for 3 min. Immediately after, the instruments were wiped several times with a clean, dry paper towel. The contaminated tips were soaked in either a multienzyme or neutral pH detergent (t = 5 min), chlorhexidine scrub (t = 2 min), or no pretreatment solution. To further increase debris removal, instruments (from all groups) were brushed using a clean toothbrush. The nonpretreatment instruments were briefly soaked in saline before brushing. After being rinsed with sterile water, all instruments were exposed to a glass bead sterilizer for 60 s at 500 °F (260 °C). Sets were then swabbed for bacterial culturing. Swabs were plated onto either sheep blood agar (n = 23) or chocolate agar (n = 20) for aerobic culturing or Brucella agar (n = 20) for anaerobic culturing. A subset of instruments was sampled to determine organic material presence after treatment using an ATP luminometer (n = 21). Multiple agar types and bioluminescence were used to more deeply evaluate tool sterility and to differentiate the relative effectiveness of each protocol. From the saline group, only one pair of forceps yielded growth on Brucella agar, and 2 pairs yielded growth on chocolate agar. No other bacterial growth was observed. The use of a pretreatment agent also lowered overall organic contamination levels in needle drivers compared with using only saline. These results indicate that brushing instruments to mechanically remove debris from instruments is paramount to ensure sterility. However, a best practice would be to also use one of the pretreatment options used in this study.

3.
Can J Cardiol ; 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38460611

RESUMEN

Age is a major risk factor for the development of cardiovascular diseases in men and in women. However, not all people age at the same rate and those who are aging rapidly are considered frail, compared with their fit counterparts. Frailty is an important clinical challenge because those who are frail are more likely to develop and die from illnesses, including cardiovascular diseases, than fit people of the same age. This increase in susceptibility to cardiovascular diseases in older individuals might occur as the cellular and molecular mechanisms involved in the aging process facilitate structural and functional damage in the heart. Consistent with this, recent studies in murine frailty models have provided strong evidence that maladaptive cardiac remodelling in older mice is the most pronounced in mice with a high level of frailty. For example, there is evidence that ventricular hypertrophy and contractile dysfunction increase as frailty increases in aging mice. Additionally, fibrosis and slowing of conduction in the sinoatrial node and atria are proportional to the level of frailty. These modifications could predispose frail older adults to diseases like heart failure and atrial fibrillation. This preclinical work also raises the possibility that emerging interventions designed to "treat frailty" might also treat or prevent cardiovascular diseases. These findings might help to explain why frail older people are most likely to develop these disorders as they age.

4.
Angew Chem Int Ed Engl ; 63(12): e202319583, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38282100

RESUMEN

Small molecules, including therapeutic drugs and tracer molecules, play a vital role in biological processing, disease treatment and diagnosis, and have inspired various nanobiotechnology approaches to realize their biological function, particularly in drug delivery. Desirable features of a delivery system for functional small molecules (FSMs) include high biocompatibility, high loading capacity, and simple manufacturing processes, without the need for chemical modification of the FSM itself. Herein, we report a simple and versatile approach, based on metal-phenolic-mediated assembly, for assembling FSMs into nanoparticles (i.e., FSM-MPN NPs) under aqueous and ambient conditions. We demonstrate loading of anticancer drugs, latency reversal agents, and fluorophores at up to ~80 % that is mostly facilitated by π and hydrophobic interactions between the FSM and nanoparticle components. Secondary nanoparticle engineering involving coating with a polyphenol-antibody thin film or sequential co-loading of multiple FSMs enables cancer cell targeting and combination delivery, respectively. Incorporating fluorophores into FSM-MPN NPs enables the visualization of biodistribution at different time points, revealing that most of these NPs are retained in the kidney and heart 24 h post intravenous administration. This work provides a viable pathway for the rational design of small molecule nanoparticle delivery platforms for diverse biological applications.


Asunto(s)
Nanopartículas , Distribución Tisular , Nanopartículas/química , Sistemas de Liberación de Medicamentos , Fenoles , Polifenoles , Metales
5.
Circ Arrhythm Electrophysiol ; 16(11): e012199, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37933567

RESUMEN

BACKGROUND: ß-AR (ß-adrenergic receptor) stimulation regulates atrial electrophysiology and Ca2+ homeostasis via cAMP-dependent mechanisms; however, enhanced ß-AR signaling can promote atrial fibrillation (AF). CNP (C-type natriuretic peptide) can also regulate atrial electrophysiology through the activation of NPR-B (natriuretic peptide receptor B) and cGMP-dependent signaling. Nevertheless, the role of NPR-B in regulating atrial electrophysiology, Ca2+ homeostasis, and atrial arrhythmogenesis is incompletely understood. METHODS: Studies were performed using atrial samples from human patients with AF or sinus rhythm and in wild-type and NPR-B-deficient (NPR-B+/-) mice. Studies were conducted in anesthetized mice by intracardiac electrophysiology, in isolated mouse atrial preparations using high-resolution optical mapping, in isolated mouse and human atrial myocytes using patch-clamping and Ca2+ imaging, and in mouse and human atrial tissues using molecular biology. RESULTS: Atrial NPR-B protein levels were reduced in patients with AF, and NPR-B+/- mice were more susceptible to AF. Atrial cGMP levels and PDE2 (phosphodiesterase 2) activity were reduced in NPR-B+/- mice leading to larger increases in atrial cAMP in the presence of the ß-AR agonist isoproterenol. NPR-B+/- mice displayed larger increases in action potential duration and L-type Ca2+ current in the presence of isoproterenol. This resulted in the occurrence of spontaneous sarcoplasmic reticulum Ca2+ release events and delayed afterdepolarizations in NPR-B+/- atrial myocytes. Phosphorylation of the RyR2 (ryanodine receptor) and phospholamban was increased in NPR-B+/- atria in the presence of isoproterenol compared with the wildtypes. C-type natriuretic peptide inhibited isoproterenol-stimulated L-type Ca2+ current through PDE2 in mouse and human atrial myocytes. CONCLUSIONS: NPR-B protects against AF by preventing enhanced atrial responses to ß-adrenergic receptor agonists.


Asunto(s)
Fibrilación Atrial , Humanos , Ratones , Animales , Fibrilación Atrial/prevención & control , Fibrilación Atrial/metabolismo , Isoproterenol/farmacología , Péptido Natriurético Tipo-C/farmacología , Atrios Cardíacos , Miocitos Cardíacos/metabolismo
6.
Heart Rhythm O2 ; 4(11): 725-732, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38034891

RESUMEN

The current antiarrhythmic paradigm is mainly centered around modulating membrane voltage. However, abnormal cytosolic calcium (Ca2+) signaling, which plays an important role in driving membrane voltage, has not been targeted for therapeutic purposes in arrhythmogenesis. There is clear evidence for bidirectional coupling between membrane voltage and intracellular Ca2+. Cytosolic Ca2+ regulates membrane voltage through Ca2+-sensitive membrane currents. As a component of Ca2+-sensitive currents, Ca2+-activated nonspecific cationic current through the TRPM4 (transient receptor potential melastatin 4) channel plays a significant role in Ca2+-driven changes in membrane electrophysiology. In myopathic and ischemic ventricles, upregulation and/or enhanced activity of this current is associated with the generation of afterdepolarization (both early and delayed), reduction of repolarization reserve, and increased propensity to ventricular arrhythmias. In this review, we describe a novel concept for the management of ventricular arrhythmias in the remodeled ventricle based on mechanistic concepts from experimental studies, by uncoupling the Ca2+-induced changes in membrane voltage by inhibition of this TRPM4-mediated current.

7.
JACC Basic Transl Sci ; 8(8): 922-936, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37719430

RESUMEN

Atrial fibrillation (AF) is highly prevalent in type 2 diabetes where it increases morbidity and mortality. Glucagon-like peptide (GLP)-1 receptor agonists are used in the treatment of type 2 diabetes (T2DM), but their effects on AF in T2DM are poorly understood. The present study demonstrates type 2 diabetic db/db mice are highly susceptible to AF in association with atrial electrical and structural remodeling. GLP-1, as well as the long-acting GLP-1 analogue liraglutide, reduced AF and prevented atrial remodeling in db/db mice. These data suggest that GLP-1 and related analogues could protect against AF in patients with T2DM.

8.
Cardiovasc Res ; 119(17): 2697-2711, 2023 12 30.
Artículo en Inglés | MEDLINE | ID: mdl-37643895

RESUMEN

AIMS: The sympathetic nervous system increases HR by activating ß-adrenergic receptors (ß-ARs) and increasing cAMP in sinoatrial node (SAN) myocytes while phosphodiesterases (PDEs) degrade cAMP. Chronotropic incompetence, the inability to regulate heart rate (HR) in response to sympathetic nervous system activation, is common in hypertensive heart disease; however, the basis for this is poorly understood. The objective of this study was to determine the mechanisms leading to chronotropic incompetence in mice with angiotensin II (AngII)-induced hypertensive heart disease. METHODS AND RESULTS: C57BL/6 mice were infused with saline or AngII (2.5 mg/kg/day for 3 weeks) to induce hypertensive heart disease. HR and SAN function in response to the ß-AR agonist isoproterenol (ISO) were studied in vivo using telemetry and electrocardiography, in isolated atrial preparations using optical mapping, in isolated SAN myocytes using patch-clamping, and using molecular biology. AngII-infused mice had smaller increases in HR in response to physical activity and during acute ISO injection. Optical mapping of the SAN in AngII-infused mice demonstrated impaired increases in conduction velocity and altered conduction patterns in response to ISO. Spontaneous AP firing responses to ISO in isolated SAN myocytes from AngII-infused mice were impaired due to smaller increases in diastolic depolarization (DD) slope, hyperpolarization-activated current (If), and L-type Ca2+ current (ICa,L). These changes were due to increased localization of PDE4D surrounding ß1- and ß2-ARs in the SAN, increased SAN PDE4 activity, and reduced cAMP generation in response to ISO. Knockdown of PDE4D using a virus-delivered shRNA or inhibition of PDE4 with rolipram normalized SAN sensitivity to ß-AR stimulation in AngII-infused mice. CONCLUSIONS: AngII-induced hypertensive heart disease results in impaired HR responses to ß-AR stimulation due to up-regulation of PDE4D and reduced effects of cAMP on spontaneous AP firing in SAN myocytes.


Asunto(s)
Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4 , Hipertensión , Receptores Adrenérgicos beta , Nodo Sinoatrial , Animales , Ratones , Arritmias Cardíacas , Isoproterenol/farmacología , Ratones Endogámicos C57BL , Miocitos Cardíacos/metabolismo , Receptores Adrenérgicos beta/metabolismo , Transducción de Señal , Hipertensión/inducido químicamente , Hipertensión/complicaciones , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/metabolismo
9.
Am J Physiol Heart Circ Physiol ; 325(2): H264-H277, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37389950

RESUMEN

Clinical studies suggest low testosterone levels are associated with cardiac arrhythmias, especially in later life. We investigated whether chronic exposure to low circulating testosterone promoted maladaptive electrical remodeling in ventricular myocytes from aging male mice and determined the role of late inward sodium current (INa,L) in this remodeling. C57BL/6 mice had a gonadectomy (GDX) or sham surgery (1 mo) and were aged to 22-28 mo. Ventricular myocytes were isolated; transmembrane voltage and currents were recorded (37°C). Action potential duration at 70 and 90% repolarization (APD70 and APD90) was prolonged in GDX compared with sham myocytes (APD90, 96.9 ± 3.2 vs. 55.4 ± 2.0 ms; P < 0.001). INa,L was also larger in GDX than sham (-2.4 ± 0.4 vs. -1.2 ± 0.2 pA/pF; P = 0.002). When cells were exposed to the INa,L antagonist ranolazine (10 µM), INa,L declined in GDX cells (-1.9 ± 0.5 vs. -0.4 ± 0.2 pA/pF; P < 0.001) and APD90 was reduced (96.3 ± 14.8 vs. 49.2 ± 9.4 ms; P = 0.001). GDX cells had more triggered activity (early/delayed afterdepolarizations, EADs/DADs) and spontaneous activity than sham. EADs were inhibited by ranolazine in GDX cells. The selective NaV1.8 blocker A-803467 (30 nM) also reduced INa,L, decreased APD and abolished triggered activity in GDX cells. Scn5a (NaV1.5) and Scn10a (NaV1.8) mRNA was increased in GDX ventricles, but only NaV1.8 protein abundance was increased in GDX compared with sham. In vivo studies showed QT prolongation and more arrhythmias in GDX mice. Thus, triggered activity in ventricular myocytes from aging male mice with long-term testosterone deficiency arises from APD prolongation mediated by larger NaV1.8- and NaV1.5-associated currents, which may explain the increase in arrhythmias.NEW & NOTEWORTHY Older men with low testosterone levels are at increased risk of developing cardiac arrhythmias. We found aged mice chronically exposed to low testosterone had more arrhythmias and ventricular myocytes had prolonged repolarization, abnormal electrical activity, larger late sodium currents, and increased expression of NaV1.8 sodium channels. Drugs that inhibit late sodium current or NaV1.8 channels abolished abnormal electrical activity and shortened repolarization. This suggests the late sodium current may be a novel target to treat arrhythmias in older testosterone-deficient men.


Asunto(s)
Sodio , Testosterona , Ratones , Masculino , Animales , Ranolazina/farmacología , Ranolazina/metabolismo , Testosterona/farmacología , Testosterona/metabolismo , Sodio/metabolismo , Ratones Endogámicos C57BL , Miocitos Cardíacos/metabolismo , Arritmias Cardíacas , Canales de Sodio/metabolismo , Potenciales de Acción , Envejecimiento
10.
Angew Chem Int Ed Engl ; 62(12): e202214935, 2023 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-36700351

RESUMEN

DNA-based materials have attracted interest due to the tunable structure and encoded biological functionality of nucleic acids. A simple and general approach to synthesize DNA-based materials with fine control over morphology and bioactivity is important to expand their applications. Here, we report the synthesis of DNA-based particles via the supramolecular assembly of tannic acid (TA) and DNA. Uniform particles with different morphologies are obtained using a variety of DNA building blocks. The particles enable the co-delivery of cytosine-guanine adjuvant sequences and the antigen ovalbumin in model cells. Intramuscular injection of the particles in mice induces antigen-specific antibody production and T cell responses with no apparent toxicity. Protein expression in cells is shown using capsules assembled from TA and plasmid DNA. This work highlights the potential of TA as a universal material for directing the supramolecular assembly of DNA into gene and vaccine delivery platforms.


Asunto(s)
Adyuvantes Inmunológicos , Polifenoles , Ratones , Animales , Adyuvantes Inmunológicos/química , Antígenos , Sistemas de Liberación de Medicamentos , ADN/química
11.
J Oncol Pharm Pract ; 29(7): 1555-1564, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36303425

RESUMEN

BACKGROUND: The impact and downstream effects of the chemotherapy supply chain in Ethiopia are not well understood. The purpose of this study was to identify perceived gaps in supply chain and characterize their impact on patient care. METHODS: A concurrent mixed-method study was conducted at a large academic cancer center in Ethiopia. In-depth interviews (IDIs) and surveys were completed in collaboration with external stakeholders with knowledge about chemotherapy supply chain in Ethiopia. Thematic coding was used for qualitative analysis of IDI and descriptive statistics were used to summarize quantitative survey data. RESULTS: Six stakeholders participated in the IDIs and seven completed surveys. IDIs revealed that most chemotherapeutic agents are purchased by the Ethiopian Pharmaceutical Supply Agency (EPSA) and are distributed to cancer treatment centers. A free-market purchasing option also exists, but for chemotherapy obtained outside of government-subsidized channels, the potential for substandard or falsified chemotherapy was a concern. Participants expressed confidence that the correct treatment was administered to patients, but viewpoints on reliability and consistency of medication supply were variable. Quantitative data from the survey showed that participants were not confident that medications are prepared safely and correctly. Improper storage and manipulation of high-risk medications remain a significant risk to staff. CONCLUSIONS: This study provides insight from a healthcare staff perspective on how gaps in the chemotherapy supply chain process impact patient care in a low-income country. Inventory management, disruptions in supply chain, and product integrity were perceived as the largest gaps in the current chemotherapy supply chain structure.


Asunto(s)
Atención a la Salud , Industria Farmacéutica , Humanos , Etiopía , Reproducibilidad de los Resultados , Encuestas y Cuestionarios
12.
Front Physiol ; 13: 1021807, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36388100

RESUMEN

Atrial fibrillation (AF) is associated with electrical and structural remodeling in the atria; however, the regional and temporal progression of atrial remodeling is incompletely understood. The objective of this study was to investigate the regional and temporal progression of atrial remodeling leading to changes in AF susceptibility in angiotensin II (Ang II) mediated hypertension. Mice were infused with Ang II for 3, 10 or 21 days. AF susceptibility and atrial electrophysiology were studied in vivo using intracardiac electrophysiology. Right and left atrial myocyte electrophysiology was studied using patch-clamping. Atrial fibrosis was assessed histologically. P wave duration and atrial effective refractory period increased progressively from 3 to 21 days of Ang II. AF susceptibility tended to be increased at 10 days of Ang II and was elevated at 21 days of Ang II. Left, but not right, atrial AP upstroke velocity and Na+ current were reduced at 10 and 21 days of Ang II. Left atrial action potential (AP) duration increased progressively from 3 to 21 days of Ang II due to reductions in repolarizing K+ current. Right atrial AP prolongation was increased only after 21 days of Ang II. Left and right atrial fibrosis developed progressively from 3 to 21 days, but increases were larger in the left atrium. In conclusion, Ang II mediated atrial electrical and structural remodeling develop earlier and more extensively in the left atrium compared to the right atrium, providing insight into how atrial remodeling leads to enhanced AF susceptibility in Ang II mediated hypertension.

13.
Front Physiol ; 13: 970393, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36237525

RESUMEN

Nonlinear analyses of heart rate variability (HRV) can be used to quantify the unpredictability, fractal properties and complexity of heart rate. Fractality and its analysis provides valuable information about cardiovascular health. Multi-Scale Multi-Fractal Detrended Fluctuation Analysis (MSMFDFA) is a complexity-based algorithm that can be used to quantify the multi-fractal dynamics of the HRV time series through investigating characteristic exponents at different time scales. This method is applicable to short time series and it is robust to noise and nonstationarity. We have used MSMFDFA, which enables assessment of HRV in the frequency ranges encompassing the very-low frequency and ultra-low frequency bands, to jointly assess multi-scale and multi-fractal dynamics of HRV signals obtained from telemetric ECG recordings in wildtype mice at baseline and after autonomic nervous system (ANS) blockade, from electrograms recorded from isolated atrial preparations and from spontaneous action potential recordings in isolated sinoatrial node myocytes. Data demonstrate that the fractal profile of the intrinsic heart rate is significantly different from the baseline heart rate in vivo, and it is also altered after ANS blockade at specific scales and fractal order domains. For beating rate in isolated atrial preparations and intrinsic heart rate in vivo, the average fractal structure of the HRV increased and multi-fractality strength decreased. These data demonstrate that fractal properties of the HRV depend on both ANS activity and intrinsic sinoatrial node function and that assessing multi-fractality at different time scales is an effective approach for HRV assessment.

14.
Am J Physiol Heart Circ Physiol ; 323(6): H1137-H1166, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36269644

RESUMEN

Cardiac arrhythmias are a major cause of morbidity and mortality worldwide. Although recent advances in cell-based models, including human-induced pluripotent stem cell-derived cardiomyocytes (iPSC-CM), are contributing to our understanding of electrophysiology and arrhythmia mechanisms, preclinical animal studies of cardiovascular disease remain a mainstay. Over the past several decades, animal models of cardiovascular disease have advanced our understanding of pathological remodeling, arrhythmia mechanisms, and drug effects and have led to major improvements in pacing and defibrillation therapies. There exist a variety of methodological approaches for the assessment of cardiac electrophysiology and a plethora of parameters may be assessed with each approach. This guidelines article will provide an overview of the strengths and limitations of several common techniques used to assess electrophysiology and arrhythmia mechanisms at the whole animal, whole heart, and tissue level with a focus on small animal models. We also define key electrophysiological parameters that should be assessed, along with their physiological underpinnings, and the best methods with which to assess these parameters.


Asunto(s)
Enfermedades Cardiovasculares , Células Madre Pluripotentes Inducidas , Animales , Humanos , Técnicas Electrofisiológicas Cardíacas , Arritmias Cardíacas/etiología , Miocitos Cardíacos
15.
ACS Appl Mater Interfaces ; 14(36): 40724-40737, 2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36018830

RESUMEN

Pseudomonas aeruginosa is the leading nosocomial and community-acquired pathogen causing a plethora of acute and chronic infections. The Centers for Disease Control and Prevention has designated multidrug-resistant isolates of P. aeruginosa as a serious threat. A novel delivery vehicle capable of specifically targeting  P. aeruginosa, and encapsulating antimicrobials, may address the challenges associated with these infections. We have developed hetero-multivalent targeted liposomes functionalized with host cell glycans to increase the delivery of antibiotics to the site of infection. Previously, we have demonstrated that compared with monovalent liposomes, these hetero-multivalent liposomes bind with higher affinity to P. aeruginosa. Here, compared with nontargeted liposomes, we have shown that greater numbers of targeted liposomes are found in the circulation, as well as at the site of P. aeruginosa (PAO1) infection in the thighs of CD-1 mice. No significant difference was found in the uptake of targeted, nontargeted, and PEGylated liposomes by J774.A1 macrophages. Ciprofloxacin-loaded liposomes were formulated and characterized for size, encapsulation, loading, and drug release. In vitro antimicrobial efficacy was assessed using CLSI broth microdilution assays and time-kill kinetics. Lastly, PAO1-inoculated mice treated with ciprofloxacin-loaded, hetero-multivalent targeted liposomes survived longer than mice treated with ciprofloxacin-loaded, monovalent targeted, or nontargeted liposomes and free ciprofloxacin. Thus, liposomes functionalized with host cell glycans target P. aeruginosa resulting in increased retention of the liposomes in the circulation, accumulation at the site of infection, and increased survival time in a mouse surgical site infection model. Consequently, this formulation strategy may improve outcomes in patients infected with P. aeruginosa.


Asunto(s)
Antiinfecciosos , Infecciones por Pseudomonas , Animales , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Antiinfecciosos/uso terapéutico , Ciprofloxacina , Liposomas , Ratones , Pruebas de Sensibilidad Microbiana , Infecciones por Pseudomonas/tratamiento farmacológico , Pseudomonas aeruginosa
17.
J Control Release ; 348: 420-430, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35636618

RESUMEN

As a malignant tumour of lymphatic origin, B-cell lymphoma represents a significant challenge for drug delivery, where effective therapies must access malignant cells in the blood, organs and lymphatics while avoiding off-target toxicity. Subcutaneous (SC) administration of nanomedicines allows preferential access to both the lymphatic and blood systems and may therefore provide a route to enhanced drug exposure to lymphomas. Here we examine the impact of SC dosing on lymphatic exposure, pharmacokinetics (PK), and efficacy of AZD0466, a small molecule dual Bcl-2/Bcl-xL inhibitor conjugated to a 'DEP®' G5 poly-l-lysine dendrimer. PK studies reveal that the plasma half-life of the dendrimer-drug conjugate is 8-times longer than that of drug alone, providing evidence of slow release from the circulating dendrimer nanocarrier. The SC dosed construct also shows preferential lymphatic transport, with over 50% of the bioavailable dose recovered in thoracic lymph. Increases in dose (up to 400 mg/kg) are well tolerated after SC administration and studies in a model of disseminated lymphoma in mice show that high dose SC treatment outperforms IV administration using doses that lead to similar total plasma exposure (lower peak concentrations but extended exposure after SC). These data show that the DEP® dendrimer can act as a circulating drug depot accessing both the lymphatic and blood circulatory systems. SC administration improves lymphatic exposure and facilitates higher dose administration due to improved tolerability. Higher dose SC administration also results in improved efficacy, suggesting that drug delivery systems that access both plasma and lymph hold significant potential for the treatment of haematological cancers where lymphatic and extranodal dissemination are poor prognostic factors.


Asunto(s)
Antineoplásicos , Dendrímeros , Linfoma , Animales , Dendrímeros/química , Inyecciones Subcutáneas , Linfa , Sistema Linfático , Linfoma/tratamiento farmacológico , Ratones
18.
Nanoscale ; 14(9): 3452-3466, 2022 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-35179174

RESUMEN

Engineered nanoparticles for the encapsulation of bioactive agents hold promise to improve disease diagnosis, prevention and therapy. To advance this field and enable clinical translation, the rational design of nanoparticles with controlled functionalities and a robust understanding of nanoparticle-cell interactions in the complex biological milieu are of paramount importance. Herein, a simple platform obtained through the nanocomplexation of glycogen nanoparticles and albumin is introduced for the delivery of chemotherapeutics in complex multicellular 2D and 3D systems. We found that the dendrimer-like structure of aminated glycogen nanoparticles is key to controlling the multivalent coordination and phase separation of albumin molecules to form stable glycogen-albumin nanocomplexes. The pH-responsive glycogen scaffold conferred the nanocomplexes the ability to undergo partial endosomal escape in tumour, stromal and immune cells while albumin enabled nanocomplexes to cross endothelial cells and carry therapeutic agents. Limited interactions of nanocomplexes with T cells, B cells and natural killer cells derived from human blood were observed. The nanocomplexes can accommodate chemotherapeutic drugs and release them in multicellular 2D and 3D constructs. The drugs loaded on the nanocomplexes retained their cytotoxic activity, which is comparable with the activity of the free drugs. Cancer cells were found to be more sensitive to the drugs in the presence of stromal and immune cells. Penetration and cytotoxicity of the drug-loaded nanocomplexes in tumour mimicking tissues were validated using a 3D multicellular-collagen construct in a perfusion bioreactor. The results highlight a simple and potentially scalable strategy for engineering nanocomplexes made entirely of biological macromolecules with potential use for drug delivery.


Asunto(s)
Albúminas , Antineoplásicos , Glucógeno , Nanopartículas , Albúminas/química , Antineoplásicos/administración & dosificación , Células Endoteliales , Glucógeno/química , Humanos , Nanopartículas/química
19.
J Gerontol A Biol Sci Med Sci ; 77(5): 902-908, 2022 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-34865023

RESUMEN

Heart rate (HR) is controlled by the sinoatrial node (SAN). SAN dysfunction is highly prevalent in aging; however, not all individuals age at the same rate. Rather, health status during aging is affected by frailty. Natriuretic peptides regulate SAN function in part by activating natriuretic peptide receptor C (NPR-C). The impacts of NPR-C on HR and SAN function in aging and as a function of frailty are unknown. Frailty was measured in aging wild-type and NPR-C knockout (NPR-C-/-) mice using a mouse clinical frailty index (FI). HR and SAN structure and function were investigated using intracardiac electrophysiology in anesthetized mice, high-resolution optical mapping in intact atrial preparations, histology, and molecular biology. NPR-C-/- mice rapidly became frail leading to shortened life span. HR was reduced and SAN recovery time was increased in older versus younger mice, and these changes were exacerbated in NPR-C-/- mice; however, there was substantial variability among age groups and genotypes. HR and SAN recovery time were correlated with FI score and fell along a continuum regardless of age or genotype. Optical mapping demonstrates impairments in SAN function that were also correlated with FI score. SAN fibrosis was increased in aged and NPR-C-/- mice and was graded by FI score. Loss of NPR-C results in accelerated aging and rapid decline in health status in association with impairments in HR and SAN function. Frailty assessment was effective and better able to distinguish aging-dependent changes in SAN function in the setting of shortened life span due to loss of NPR-C.


Asunto(s)
Fragilidad , Nodo Sinoatrial , Anciano , Envejecimiento/fisiología , Animales , Anciano Frágil , Humanos , Ratones , Ratones Endogámicos C57BL , Miocitos Cardíacos/patología , Nodo Sinoatrial/fisiología
20.
Cardiovasc Res ; 118(8): 1917-1931, 2022 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-34273155

RESUMEN

AIMS: Heart rate (HR) is a critical indicator of cardiac performance that is determined by sinoatrial node (SAN) function and regulation. Natriuretic peptides, including C-type NP (CNP), have been shown to modulate ion channel function in the SAN when applied exogenously. CNP is the only NP that acts as a ligand for natriuretic peptide receptor-B (NPR-B). Despite these properties, the ability of CNP and NPR-B to regulate HR and intrinsic SAN automaticity in vivo, and the mechanisms by which it does so, are incompletely understood. Thus, the objective of this study was to determine the role of NPR-B signalling in regulating HR and SAN function. METHODS AND RESULTS: We have used NPR-B deficient mice (NPR-B+/-) to study HR regulation and SAN function using telemetry in conscious mice, intracardiac electrophysiology in anaesthetized mice, high-resolution optical mapping in isolated SAN preparations, patch-clamping in isolated SAN myocytes, and molecular biology in isolated SAN tissue. These studies demonstrate that NPR-B+/- mice exhibit slow HR, increased corrected SAN recovery time, and slowed SAN conduction. Spontaneous AP firing frequency in isolated SAN myocytes was impaired in NPR-B+/- mice due to reductions in the hyperpolarization activated current (If) and L-type Ca2+ current (ICa,L). If and ICa,L were reduced due to lower cGMP levels and increased hydrolysis of cAMP by phosphodiesterase 3 (PDE3) in the SAN. Inhibiting PDE3 or restoring cGMP signalling via application of 8-Br-cGMP abolished the reductions in cAMP, AP firing, If, and ICa,L, and normalized SAN conduction, in the SAN in NPR-B+/- mice. NPR-B+/- mice did not exhibit changes in SAN fibrosis and showed no evidence of cardiac hypertrophy or changes in ventricular function. CONCLUSIONS: NPR-B plays an essential physiological role in maintaining normal HR and SAN function by modulating ion channel function in SAN myocytes via a cGMP/PDE3/cAMP signalling mechanism.


Asunto(s)
Péptido Natriurético Tipo-C , Receptores del Factor Natriurético Atrial , Nodo Sinoatrial , Animales , GMP Cíclico , Guanilato Ciclasa , Frecuencia Cardíaca , Ratones , Péptido Natriurético Tipo-C/farmacología , Péptidos Natriuréticos , Receptores del Factor Natriurético Atrial/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...