Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Geosci Model Dev ; 14: 2867-2897, 2021 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-34676058

RESUMEN

The Community Multiscale Air Quality (CMAQ) model version 5.3 (CMAQ53), released to the public in August 2019 and followed by version 5.3.1 (CMAQ531) in December 2019, contains numerous science updates, enhanced functionality, and improved computation efficiency relative to the previous version of the model, 5.2.1 (CMAQ521). Major science advances in the new model include a new aerosol module (AERO7) with significant updates to secondary organic aerosol (SOA) chemistry, updated chlorine chemistry, updated detailed bromine and iodine chemistry, updated simple halogen chemistry, the addition of dimethyl sulfide (DMS) chemistry in the CB6r3 chemical mechanism, updated M3Dry bidirectional deposition model, and the new Surface Tiled Aerosol and Gaseous Exchange (STAGE) bidirectional deposition model. In addition, support for the Weather Research and Forecasting (WRF) model's hybrid vertical coordinate (HVC) was added to CMAQ53 and the Meteorology-Chemistry Interface Processor (MCIP) version 5.0 (MCIP50). Enhanced functionality in CMAQ53 includes the new Detailed Emissions Scaling, Isolation and Diagnostic (DESID) system for scaling incoming emissions to CMAQ and reading multiple gridded input emission files. Evaluation of CMAQ531 was performed by comparing monthly and seasonal mean daily 8 h average (MDA8) O3 and daily PM2.5 values from several CMAQ531 simulations to a similarly configured CMAQ521 simulation encompassing 2016. For MDA8 O3, CMAQ531 has higher O3 in the winter versus CMAQ521, due primarily to reduced dry deposition to snow, which strongly reduces wintertime O3 bias (2-4 ppbv monthly average). MDA8 O3 is lower with CMAQ531 throughout the rest of the year, particularly in spring, due in part to reduced O3 from the lateral boundary conditions (BCs), which generally increases MDA8 O3 bias in spring and fall ( 0.5 µg m-3). For daily 24 h average PM2.5, CMAQ531 has lower concentrations on average in spring and fall, higher concentrations in summer, and similar concentrations in winter to CMAQ521, which slightly increases bias in spring and fall and reduces bias in summer. Comparisons were also performed to isolate updates to several specific aspects of the modeling system, namely the lateral BCs, meteorology model version, and the deposition model used. Transitioning from a hemispheric CMAQ (HCMAQ) version 5.2.1 simulation to a HCMAQ version 5.3 simulation to provide lateral BCs contributes to higher O3 mixing ratios in the regional CMAQ simulation in higher latitudes during winter (due to the decreased O3 dry deposition to snow in CMAQ53) and lower O3 mixing ratios in middle and lower latitudes year-round (due to reduced O3 over the ocean with CMAQ53). Transitioning from WRF version 3.8 to WRF version 4.1.1 with the HVC resulted in consistently higher (1.0-1.5 ppbv) MDA8 O3 mixing ratios and higher PM2.5 concentrations (0.1-0.25 µg m-3) throughout the year. Finally, comparisons of the M3Dry and STAGE deposition models showed that MDA8 O3 is generally higher with M3Dry outside of summer, while PM2.5 is consistently higher with STAGE due to differences in the assumptions of particle deposition velocities to non-vegetated surfaces and land use with short vegetation (e.g., grasslands) between the two models. For ambient NH3, STAGE has slightly higher concentrations and smaller bias in the winter, spring, and fall, while M3Dry has higher concentrations and smaller bias but larger error and lower correlation in the summer.

2.
Sci Total Environ ; 744: 140960, 2020 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-32711327

RESUMEN

Green infrastructure (GI) implementation can benefit an urban environment by reducing the impacts of urban stormwater on aquatic ecosystems and human health. However, few studies have systematically analyzed the biophysical effects on regional meteorology and air quality that are triggered by changes in the urban vegetative coverage. In this study we use a state-of-the-art high-resolution air quality model to simulate the effects of a hypothetically feasible vegetation-focused GI implementation scenario in Kansas City, MO/KS on regional meteorology and air quality. Full year simulations are conducted for both the base case and GI land use scenarios using two different land surface models (LSMs) schemes inside the meteorological model. While the magnitudes of the changes in air quality due to the GI implementation differ using the two LSMs, the model outputs consistently showed increases in summertime PM2.5 (1.1 µg m-3, approximately 10% increase using NOAH LSM), which occurred mostly during the night and arose from the primary components, due to the cooler surface temperatures and the decreased planetary boundary layer height (PBLH). Both the maximum daily 8-hour average ozone and 1 h daily maximum O3 during summertime, decreased over the downtown areas (maximum decreases of 0.9 and 1.4 ppbv respectively). The largest ozone decreases were simulated to happen during the night, mainly caused by the titration effect of increased NOx concentration from the lower PBLH. These results highlight the region-specific non-linear process feedback from GI on regional air quality, and further demonstrate the need for comprehensive coupled meteorological-air quality modeling systems and necessity of accurate land surface model for studying these impacts.

3.
Geosci Model Dev ; 12(10): 4409-4424, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31844504

RESUMEN

This study assesses the impact of the lightning nitric oxide (LNO) production schemes in the Community Multiscale Air Quality (CMAQ) model on ground-level air quality as well as aloft atmospheric chemistry through detailed evaluation of model predictions of nitrogen oxides (NO x ) and ozone (O3) with corresponding observations for the US. For ground-level evaluations, hourly O3 and NO x values from the U.S. EPA Air Quality System (AQS) monitoring network are used to assess the impact of different LNO schemes on model prediction of these species in time and space. Vertical evaluations are performed using ozonesonde and P-3B aircraft measurements during the Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) campaign conducted in the Baltimore- Washington region during July 2011. The impact on wet deposition of nitrate is assessed using measurements from the National Atmospheric Deposition Program's National Trends Network (NADP NTN). Compared with the Base model (without LNO), the impact of LNO on surface O3 varies from region to region depending on the Base model conditions. Overall statistics suggest that for regions where surface O3 mixing ratios are already overestimated, the incorporation of additional NO from lightning generally increased model overestimation of mean daily maximum 8 h (DM8HR) O3 by 1-2 ppb. In regions where surface O3 is underestimated by the Base model, LNO can significantly reduce the underestimation and bring model predictions close to observations. Analysis of vertical profiles reveals that LNO can significantly improve the vertical structure of modeled O3 distributions by reducing underestimation aloft and to a lesser degree decreasing overestimation near the surface. Since the Base model underestimates the wet deposition of nitrate in most regions across the modeling domain with the exception of the Pacific Coast, the inclusion of LNO leads to reduction in biases and errors and an increase in correlation coefficients at almost all the NADP NTN sites. Among the three LNO schemes described in Kang et al. (2019), the hNLDN scheme, which is implemented using hourly observed lightning flash data from National Lightning Detection Network (NLDN), performs best for comparisons with ground-level values, vertical profiles, and wet deposition of nitrate; the mNLDN scheme (the monthly NLDN-based scheme) performed slightly better. However, when observed lightning flash data are not available, the linear regression-based parameterization scheme, pNLDN, provides an improved estimate for nitrate wet deposition compared to the base simulation that does not include LNO.

4.
Geosci Model Dev ; 12(7): 3071-3083, 2019 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-32206207

RESUMEN

This work describes the lightning nitric oxide (LNO) production schemes in the Community Multiscale Air Quality (CMAQ) model. We first document the existing LNO production scheme and vertical distribution algorithm. We then describe updates that were made to the scheme originally based on monthly National Lightning Detection Network (mNLDN) observations. The updated scheme uses hourly NLDN (hNLDN) observations. These NLDN-based schemes are good for retrospective model applications when historical lightning data are available. For applications when observed data are not available (i.e., air quality forecasts and climate studies that assume similar climate conditions), we have developed a scheme that is based on linear and log-linear parameters derived from regression of multiyear historical NLDN (pNLDN) observations and meteorological model simulations. Preliminary assessment for total column LNO production reveals that the mNLDN scheme overestimates LNO by over 40% during summer months compared with the updated hNLDN scheme that reflects the observed lightning activity more faithfully in time and space. The pNLDN performance varies with year, but it generally produced LNO columns that are comparable to hNLDN and mNLDN, and in most cases it outperformed mNLDN. Thus, when no observed lightning data are available, pNLDN can provide reasonable estimates of LNO emissions over time and space for this important natural NO source that influences air quality regulations.

5.
Atmos Chem Phys ; 18(12): 9091-9106, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30079084

RESUMEN

Excess deposition (including both wet and dry deposition) of nitrogen and sulfur are detrimental to ecosystems. Recent studies have investigated the spatial patterns and temporal trends of nitrogen and sulfur wet deposition, but few studies have focused on dry deposition due to the scarcity of dry deposition measurements. Here, we use long-term model simulations from the coupled WRF-CMAQ model covering the period from 1990 to 2010 to study changes in spatial distribution as well as temporal trends in total (TDEP), wet (WDEP) and dry deposition (DDEP) of total inorganic nitrogen (TIN) and sulfur (TSO4). We first evaluate the model's performance in simulating WDEP over the U.S. by comparing the model results with observational data from the U.S. National Atmospheric Deposition Program. The coupled model generally underestimates the WDEP of both TIN (including both the oxidized nitrogen deposition-TNO3, and the reduced nitrogen deposition-NHX) and TSO4, with better performance in the eastern U.S. than the western U.S. TDEP of both TIN and TSO4 show significant decreases over the U.S., especially in the east due to the large emission reductions that occurred in that region. The decreasing trends of TIN TDEP are caused by decrease of TNO3, and the increasing trends of TIN deposition over the Great Plains and Tropical Wet Forests regions are caused by increases in NH3 emissions although it should be noted that these increasing trends are not significant. TIN WDEP shows decreasing trends throughout the U.S., except for the Marine West Coast Forest region. TIN DDEP shows significant decreasing trends in the region of Eastern Temperate Forests, Northern Forests, Mediterranean California and Marine West Coast Forest, and significant increasing trends in the region of Tropical Wet Forests, Great Plains and Southern Semi-arid Highlands. For the other three regions (North American Deserts, Temperate Sierras and Northwestern Forested Mountains), the decreasing or increasing trends were not significant. Both the WDEP and DDEP of TSOx have decreases across the U.S., with a larger decreasing trend in the DDEP than that in the WDEP. Across the U.S. during the 1990-2010 period, DDEP of TIN accounted for 58-65% of TDEP of TIN. TDEP of TIN over the U.S. was dominated by deposition of TNO3 during the first decade, which then shifts to reduced nitrogen (NHX) dominance after 2003 resulting from combination of NOx emission reductions and NH3 emission increases. The sulfur DDEP is usually higher than the sulfur WDEP until recent years, as the sulfur DDEP has a larger decreasing trend than WDEP.

6.
Atmos Chem Phys ; 18(5): 3839-3864, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30079085

RESUMEN

This study analyzes simulated regional-scale ozone burdens both near the surface and aloft, estimates process contributions to these burdens, and calculates the sensitivity of the simulated regional-scale ozone burden to several key model inputs with a particular emphasis on boundary conditions derived from hemispheric or global-scale models. The Community Multiscale Air Quality (CMAQ) model simulations supporting this analysis were performed over the continental US for the year 2010 within the context of the Air Quality Model Evaluation International Initiative (AQMEII) and Task Force on Hemispheric Transport of Air Pollution (TF-HTAP) activities. CMAQ process analysis (PA) results highlight the dominant role of horizontal and vertical advection on the ozone burden in the mid-to-upper troposphere and lower stratosphere. Vertical mixing, including mixing by convective clouds, couples fluctuations in free-tropospheric ozone to ozone in lower layers. Hypothetical bounding scenarios were performed to quantify the effects of emissions, boundary conditions, and ozone dry deposition on the simulated ozone burden. Analysis of these simulations confirms that the characterization of ozone outside the regional-scale modeling domain can have a profound impact on simulated regional-scale ozone. This was further investigated by using data from four hemispheric or global modeling systems (Chemistry - Integrated Forecasting Model (C-IFS), CMAQ extended for hemispheric applications (H-CMAQ), the Goddard Earth Observing System model coupled to chemistry (GEOS-Chem), and AM3) to derive alternate boundary conditions for the regional-scale CMAQ simulations. The regional-scale CMAQ simulations using these four different boundary conditions showed that the largest ozone abundance in the upper layers was simulated when using boundary conditions from GEOS-Chem, followed by the simulations using C-IFS, AM3, and H-CMAQ boundary conditions, consistent with the analysis of the ozone fields from the global models along the CMAQ boundaries. Using boundary conditions from AM3 yielded higher springtime ozone columns burdens in the middle and lower troposphere compared to boundary conditions from the other models. For surface ozone, the differences between the AM3-driven CMAQ simulations and the CMAQ simulations driven by other large-scale models are especially pronounced during spring and winter where they can reach more than 10 ppb for seasonal mean ozone mixing ratios and as much as 15 ppb for domain-averaged daily maximum 8 h average ozone on individual days. In contrast, the differences between the C-IFS-, GEOS-Chem-, and H-CMAQ-driven regional-scale CMAQ simulations are typically smaller. Comparing simulated sur face ozone mixing ratios to observations and computing seasonal and regional model performance statistics revealed that boundary conditions can have a substantial impact on model performance. Further analysis showed that boundary conditions can affect model performance across the entire range of the observed distribution, although the impacts tend to be lower during summer and for the very highest observed percentiles. The results are discussed in the context of future model development and analysis opportunities.

7.
Atmos Chem Phys ; 18(20): 15003-15016, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30930942

RESUMEN

Concentrations of both fine particulate matter (PM2.5) and ozone (O3) in the United States (US) have decreased significantly since 1990, mainly because of air quality regulations. Exposure to these air pollutants is associated with premature death. Here we quantify the annual mortality burdens from PM2.5 and O3 in the US from 1990 to 2010, estimate trends and inter-annual variability, and evaluate the contributions to those trends from changes in pollutant concentrations, population, and baseline mortality rates. We use a fine-resolution (36 km) self-consistent 21-year simulation of air pollutant concentrations in the US from 1990 to 2010, a health impact function, and annual county-level population and baseline mortality rate estimates. From 1990 to 2010, the modeled population-weighted annual PM2.5 decreased by 39 %, and summertime (April to September) 1 h average daily maximum O3 decreased by 9 % from 1990 to 2010. The PM2.5-related mortality burden from ischemic heart disease, chronic obstructive pulmonary disease, lung cancer, and stroke steadily decreased by 54% from 123 700 deaths year-1 (95% confidence interval, 70 800-178 100) in 1990 to 58 600 deaths year-1 (24 900-98 500) in 2010. The PM2.5-related mortality burden would have decreased by only 24% from 1990 to 2010 if the PM2.5 concentrations had stayed at the 1990 level, due to decreases in baseline mortality rates for major diseases affected by PM2.5. The mortality burden associated with O3 from chronic respiratory disease increased by 13% from 10 900 deaths year-1 (3700-17 500) in 1990 to 12 300 deaths year-1 (4100-19 800) in 2010, mainly caused by increases in the baseline mortality rates and population, despite decreases in O3 concentration. The O3-related mortality burden would have increased by 55% from 1990 to 2010 if the O3 concentrations had stayed at the 1990 level. The detrended annual O3 mortality burden has larger inter-annual variability (coefficient of variation of 12%) than the PM2.5-related burden (4%), mainly from the inter-annual variation of O3 concentration. We conclude that air quality improvements have significantly decreased the mortality burden, avoiding roughly 35 800 (38%) PM2.5-related deaths and 4600 (27%) O3-related deaths in 2010, compared to the case if air quality had stayed at 1990 levels (at 2010 baseline mortality rates and population).

8.
Atmos Chem Phys ; 18(23): 17157-17175, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-31396266

RESUMEN

Increasing emphasis has been placed on characterizing the contributions and the uncertainties of ozone imported from outside the US. In chemical transport models (CTMs), the ozone transported through lateral boundaries (referred to as LB ozone hereafter) undergoes a series of physical and chemical processes in CTMs, which are important sources of the uncertainty in estimating the impact of LB ozone on ozone levels at the surface. By implementing inert tracers for LB ozone, the study seeks to better understand how differing representations of physical processes in regional CTMs may lead to differences in the simulated LB ozone that eventually reaches the surface across the US. For all the simulations in this study (including WRF/CMAQ, WRF/CAMx, COSMO-CLM/CMAQ, and WRF/DEHM), three chemically inert tracers that generally represent the altitude ranges of the planetary boundary layer (BC1), free troposphere (BC2), and upper troposphere-lower stratosphere (BC3) are tracked to assess the simulated impact of LB specification. Comparing WRF/CAMx with WRF/CMAQ, their differences in vertical grid structure explain 10 %-60 % of their seasonally averaged differences in inert tracers at the surface. Vertical turbulent mixing is the primary contributor to the remaining differences in inert tracers across the US in all seasons. Stronger vertical mixing in WRF/CAMx brings more BC2 downward, leading to higher BCT (BCT = BC1+BC2+BC3) and BC2/BCT at the surface in WRF/CAMx. Meanwhile, the differences in inert tracers due to vertical mixing are partially counteracted by their difference in sub-grid cloud mixing over the southeastern US and the Gulf Coast region during summer. The process of dry deposition adds extra gradients to the spatial distribution of the differences in DM8A BCT by 5-10 ppb during winter and summer. COSMO-CLM/CMAQ and WRF/CMAQ show similar performance in inert tracers both at the surface and aloft through most seasons, which suggests similarity between the two models at process level. The largest difference is found in summer. Sub-grid cloud mixing plays a primary role in their differences in inert tracers over the southeastern US and the oceans in summer. Our analysis of the vertical profiles of inert tracers also suggests that the model differences in dry deposition over certain regions are offset by the model differences in vertical turbulent mixing, leading to small differences in inert tracers at the surface in these regions.

9.
J Geophys Res Atmos ; 122(24): 13545-13572, 2017 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-30245953

RESUMEN

The Weather Research and Forecasting (WRF) and Community Multiscale Air Quality (CMAQ) models were used to simulate a 10 day high-ozone episode observed during the 2013 Uinta Basin Winter Ozone Study (UBWOS). The baseline model had a large negative bias when compared to ozone (O3) and volatile organic compound (VOC) measurements across the basin. Contrary to other wintertime Uinta Basin studies, predicted nitrogen oxides (NO x ) were typically low compared to measurements. Increases to oil and gas VOC emissions resulted in O3 predictions closer to observations, and nighttime O3 improved when reducing the deposition velocity for all chemical species. Vertical structures of these pollutants were similar to observations on multiple days. However, the predicted surface layer VOC mixing ratios were generally found to be underestimated during the day and overestimated at night. While temperature profiles compared well to observations, WRF was found to have a warm temperature bias and too low nighttime mixing heights. Analyses of more realistic snow heat capacity in WRF to account for the warm bias and vertical mixing resulted in improved temperature profiles, although the improved temperature profiles seldom resulted in improved O3 profiles. While additional work is needed to investigate meteorological impacts, results suggest that the uncertainty in the oil and gas emissions contributes more to the underestimation of O3. Further, model adjustments based on a single site may not be suitable across all sites within the basin.

10.
Atmos Chem Phys ; 17: 12449-12474, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29681922

RESUMEN

The Community Multiscale Air Quality (CMAQ) modeling system is extended to simulate ozone, particulate matter, and related precursor distributions throughout the Northern Hemisphere. Modelled processes were examined and enhanced to suitably represent the extended space and time scales for such applications. Hemispheric scale simulations with CMAQ and the Weather Research and Forecasting (WRF) model are performed for multiple years. Model capabilities for a range of applications including episodic long-range pollutant transport, long-term trends in air pollution across the Northern Hemisphere, and air pollution-climate interactions are evaluated through detailed comparison with available surface, aloft, and remotely sensed observations. The expansion of CMAQ to simulate the hemispheric scales provides a framework to examine interactions between atmospheric processes occurring at various spatial and temporal scales with physical, chemical, and dynamical consistency.

11.
Atmos Environ (1994) ; 160: 36-45, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-31396010

RESUMEN

This study investigates the effect of initial conditions (IC) for pollutant concentrations in the atmosphere and soil on simulated air quality for two continental-scale Community Multiscale Air Quality (CMAQ) model applications. One of these applications was performed for springtime and the second for summertime. Results show that a spin-up period of ten days commonly used in regional-scale applications may not be sufficient to reduce the effects of initial conditions to less than 1% of seasonally-averaged surface ozone concentrations everywhere while 20 days were found to be sufficient for the entire domain for the spring case and almost the entire domain for the summer case. For the summer case, differences were found to persist longer aloft due to circulation of air masses and even a spin-up period of 30 days was not sufficient to reduce the effects of ICs to less than 1% of seasonally-averaged layer 34 ozone concentrations over the southwestern portion of the modeling domain. Analysis of the effect of soil initial conditions for the CMAQ bidirectional NH3 exchange model shows that during springtime they can have an important effect on simulated inorganic aerosols concentrations for time periods of one month or longer. The effects are less pronounced during other seasons. The results, while specific to the modeling domain and time periods simulated here, suggest that modeling protocols need to be scrutinized for a given application and that it cannot be assumed that commonly-used spin-up periods are necessarily sufficient to reduce the effects of initial conditions on model results to an acceptable level. What constitutes an acceptable level of difference cannot be generalized and will depend on the particular application, time period and species of interest. Moreover, as the application of air quality models is being expanded to cover larger geographical domains and as these models are increasingly being coupled with other modeling systems to better represent air-surface-water exchanges, the effects of model initialization in such applications needs to be studied in future work.

12.
Geosci Model Dev ; 10(4): 1703-1732, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-30147852

RESUMEN

The Community Multiscale Air Quality (CMAQ) model is a comprehensive multipollutant air quality modeling system developed and maintained by the US Environmental Protection Agency's (EPA) Office of Research and Development (ORD). Recently, version 5.1 of the CMAQ model (v5.1) was released to the public, incorporating a large number of science updates and extended capabilities over the previous release version of the model (v5.0.2). These updates include the following: improvements in the meteorological calculations in both CMAQ and the Weather Research and Forecast (WRF) model used to provide meteorological fields to CMAQ, updates to the gas and aerosol chemistry, revisions to the calculations of clouds and photolysis, and improvements to the dry and wet deposition in the model. Sensitivity simulations isolating several of the major updates to the modeling system show that changes to the meteorological calculations result in enhanced afternoon and early evening mixing in the model, periods when the model historically underestimates mixing. This enhanced mixing results in higher ozone (O3) mixing ratios on average due to reduced NO titration, and lower fine particulate matter (PM2.5) concentrations due to greater dilution of primary pollutants (e.g., elemental and organic carbon). Updates to the clouds and photolysis calculations greatly improve consistency between the WRF and CMAQ models and result in generally higher O3 mixing ratios, primarily due to reduced cloudiness and attenuation of photolysis in the model. Updates to the aerosol chemistry result in higher secondary organic aerosol (SOA) concentrations in the summer, thereby reducing summertime PM2.5 bias (PM2.5 is typically underestimated by CMAQ in the summer), while updates to the gas chemistry result in slightly higher O3 and PM2.5 on average in January and July. Overall, the seasonal variation in simulated PM2.5 generally improves in CMAQv5.1 (when considering all model updates), as simulated PM2.5 concentrations decrease in the winter (when PM2.5 is generally overestimated by CMAQ) and increase in the summer (when PM2.5 is generally underestimated by CMAQ). Ozone mixing ratios are higher on average with v5.1 vs. v5.0.2, resulting in higher O3 mean bias, as O3 tends to be overestimated by CMAQ throughout most of the year (especially at locations where the observed O3 is low); however, O3 correlation is largely improved with v5.1. Sensitivity simulations for several hypothetical emission reduction scenarios show that v5.1 tends to be slightly more responsive to reductions in NO x (NO + NO2), VOC and SO x (SO2 + SO4) emissions than v5.0.2, representing an improvement as previous studies have shown CMAQ to underestimate the observed reduction in O3 due to large, widespread reductions in observed emissions.

13.
Environ Sci Technol ; 42(23): 8798-802, 2008 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-19192800

RESUMEN

Mounting evidence suggests that low-volatility (particle-phase) organic compounds form in the atmosphere through aqueous phase reactions in clouds and aerosols. Although some models have begun including secondary organic aerosol (SOA) formation through cloud processing, validation studies that compare predictions and measurements are needed. In this work, agreement between modeled organic carbon (OC) and aircraft measurements of water soluble OC improved for all 5 of the compared ICARTT NOAA-P3 flights during August when an in-cloud SOA (SOAcld) formation mechanism was added to CMAQ (a regional-scale atmospheric model). The improvement was most dramatic for the August 14th flight, a flight designed specifically to investigate clouds. During this flight the normalized mean bias for layer-averaged OC was reduced from -64 to -15% and correlation (r) improved from 0.5 to 0.6. Underpredictions of OC aloft by atmospheric models may be explained, in part, by this formation mechanism (SOAcld). OC formation aloft contributes to long-range pollution transport and has implications to radiative forcing, regional air quality and climate.


Asunto(s)
Aerosoles/análisis , Carbono/análisis , Modelos Químicos , Compuestos Orgánicos/análisis , Aeronaves , Atmósfera/química , Cooperación Internacional , Solubilidad , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA