Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 9(18): eadf0108, 2023 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-37134157

RESUMEN

Immune checkpoint blockade has been largely unsuccessful for the treatment of bone metastatic castrate-resistant prostate cancer (mCRPC). Here, we report a combinatorial strategy to treat mCRPC using γδ-enriched chimeric antigen receptor (CAR) T cells and zoledronate (ZOL). In a preclinical murine model of bone mCRPC, γδ CAR-T cells targeting prostate stem cell antigen (PSCA) induced a rapid and significant regression of established tumors, combined with increased survival and reduced cancer-associated bone disease. Pretreatment with ZOL, a U.S. Food and Drug Administration-approved bisphosphonate prescribed to mitigate pathological fracture in mCRPC patients, resulted in CAR-independent activation of γδ CAR-T cells, increased cytokine secretion, and enhanced antitumor efficacy. These data show that the activity of the endogenous Vγ9Vδ2 T cell receptor is preserved in CAR-T cells, allowing for dual-receptor recognition of tumor cells. Collectively, our findings support the use of γδ CAR-T cell therapy for mCRPC treatment.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Receptores Quiméricos de Antígenos , Estados Unidos , Masculino , Humanos , Animales , Ratones , Neoplasias de la Próstata Resistentes a la Castración/terapia , Ácido Zoledrónico/farmacología , Receptores de Antígenos de Linfocitos T , Tratamiento Basado en Trasplante de Células y Tejidos
2.
J Immunother Cancer ; 9(10)2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34706886

RESUMEN

BACKGROUND: Co-stimulatory signals regulate the expansion, persistence, and function of chimeric antigen receptor (CAR) T cells. Most studies have focused on the co-stimulatory domains CD28 or 4-1BB. CAR T cell persistence is enhanced by 4-1BB co-stimulation leading to nuclear factor kappa B (NF-κB) signaling, while resistance to exhaustion is enhanced by mutations of the CD28 co-stimulatory domain. METHODS: We hypothesized that a third-generation CAR containing 4-1BB and CD28 with only PYAP signaling motif (mut06) would provide beneficial aspects of both. We designed CD19-specific CAR T cells with either 4-1BB or mut06 together with the combination of both and evaluated their immune-phenotype, cytokine secretion, real-time cytotoxic ability and polyfunctionality against CD19-expressing cells. We analyzed lymphocyte-specific protein tyrosine kinase (LCK) recruitment by the different constructs by immunoblotting. We further determined their ability to control growth of Raji cells in NOD scid gamma (NSG) mice. We also engineered bi-specific CARs against CD20/CD19 combining 4-1BB and mut06 and performed repeated in vitro antigenic stimulation experiments to evaluate their expansion, memory phenotype and phenotypic (PD1+CD39+) and functional exhaustion. Bi-specific CAR T cells were transferred into Raji or Nalm6-bearing mice to study their ability to eradicate CD20/CD19-expressing tumors. RESULTS: Co-stimulatory domains combining 4-1BB and mut06 confers CAR T cells with an increased central memory phenotype, expansion, and LCK recruitment to the CAR. This enhanced function was dependent on the positioning of the two co-stimulatory domains. A bi-specific CAR targeting CD20/CD19, incorporating 4-1BB and mut06 co-stimulation, showed enhanced antigen-dependent in vitro expansion with lower exhaustion-associated markers. Bi-specific CAR T cells exhibited improved in vivo antitumor activity with increased persistence and decreased exhaustion. CONCLUSION: These results demonstrate that co-stimulation combining 4-1BB with an optimized form of CD28 is a valid approach to optimize CAR T cell function. Cells with both mono-specific and bi-specific versions of this design showed enhanced in vitro and in vivo features such as expansion, persistence and resistance to exhaustion. Our observations validate the approach and justify clinical studies to test the efficacy and safety of this CAR in patients.


Asunto(s)
Antígenos CD28/metabolismo , Ingeniería Celular/métodos , Neoplasias/genética , Receptores Quiméricos de Antígenos/genética , Miembro 9 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/metabolismo , Animales , Femenino , Humanos , Masculino , Ratones
4.
Breast Cancer Res ; 23(1): 40, 2021 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-33766090

RESUMEN

BACKGROUND: Characterization of breast cancer (BC) through the determination of conventional markers such as ER, PR, HER2, and Ki67 has been useful as a predictive and therapeutic tool. Also, assessment of tumor-infiltrating lymphocytes has been proposed as an important prognostic aspect to be considered in certain BC subtypes. However, there is still a need to identify additional biomarkers that could add precision in distinguishing therapeutic response of individual patients. To this end, we focused in the expression of interferon regulatory factor 8 (IRF8) in BC cells. IRF8 is a transcription factor which plays a well-determined role in myeloid cells and that seems to have multiple antitumoral roles: it has tumor suppressor functions; it acts downstream IFN/STAT1, required for the success of some therapeutic regimes, and its expression in neoplastic cells seems to depend on a cross talk between the immune contexture and the tumor cells. The goal of the present study was to examine the relationship between IRF8 with the therapeutic response and the immune contexture in BC, since its clinical significance in this type of cancer has not been thoroughly addressed. METHODS: We identified the relationship between IRF8 expression and the clinical outcome of BC patients and validated IRF8 as predictive biomarker by using public databases and then performed in silico analysis. To correlate the expression of IRF8 with the immune infiltrate in BC samples, we performed quantitative multiplex immunohistochemistry. RESULTS: IRF8 expression can precisely predict the complete pathological response to monoclonal antibody therapy or to select combinations of chemotherapy such as FAC (fluorouracil, adriamycin, and cytoxan) in ER-negative BC subtypes. Analysis of immune cell infiltration indicates there is a strong correlation between activated and effector CD8+ T cell infiltration and tumoral IRF8 expression. CONCLUSIONS: We propose IRF8 expression as a potent biomarker not only for prognosis, but also for predicting therapy response in ER-negative BC phenotypes. Its expression in neoplastic cells also correlates with CD8+ T cell activation and infiltration. Therefore, our results justify new efforts towards understanding mechanisms regulating IRF8 expression and how they can be therapeutically manipulated.


Asunto(s)
Neoplasias de la Mama/metabolismo , Linfocitos T CD8-positivos/patología , Factores Reguladores del Interferón/metabolismo , Linfocitos Infiltrantes de Tumor/patología , Receptores de Estrógenos/deficiencia , Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/patología , Neoplasias de la Mama/terapia , Línea Celular Tumoral , Progresión de la Enfermedad , Femenino , Humanos , Pronóstico , Resultado del Tratamiento
5.
J Clin Invest ; 131(2)2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33463538

RESUMEN

Chimeric antigen receptor (CAR) T cell therapy has shown considerable promise for hematologic malignancies, leading to the US Food and Drug Administration approval of two CAR T cell-based therapies for the treatment of B cell acute lymphoblastic leukemia and large B cell lymphoma. Despite success in hematologic malignancies, the treatment landscape of CAR T cell therapy for solid tumors has been limited. There are unique challenges in the development of novel CAR T cell therapies to improve both safety and efficacy. Improved understanding of the immunosuppressive tumor microenvironment and resistance mechanisms has led to encouraging approaches to mitigating these obstacles. This Review will characterize challenges with current CAR T designs for hematologic malignancies and solid tumors and emphasize preclinical and clinical strategies to overcome them with novel CAR T cell therapies.


Asunto(s)
Neoplasias Hematológicas/terapia , Inmunoterapia Adoptiva , Linfoma de Células B/terapia , Leucemia-Linfoma Linfoblástico de Células Precursoras B/terapia , Receptores Quiméricos de Antígenos/uso terapéutico , Humanos
6.
Proc Natl Acad Sci U S A ; 116(48): 24231-24241, 2019 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-31699819

RESUMEN

Trisomy 21 (T21) causes Down syndrome (DS), a condition characterized by high prevalence of autoimmune disorders. However, the molecular and cellular mechanisms driving this phenotype remain unclear. Building upon our previous finding that T cells from people with DS show increased expression of interferon (IFN)-stimulated genes, we have completed a comprehensive characterization of the peripheral T cell compartment in adults with DS with and without autoimmune conditions. CD8+ T cells from adults with DS are depleted of naïve subsets and enriched for differentiated subsets, express higher levels of markers of activation and senescence (e.g., IFN-γ, Granzyme B, PD-1, KLRG1), and overproduce cytokines tied to autoimmunity (e.g., TNF-α). Conventional CD4+ T cells display increased differentiation, polarization toward the Th1 and Th1/17 states, and overproduction of the autoimmunity-related cytokines IL-17A and IL-22. Plasma cytokine analysis confirms elevation of multiple autoimmunity-related cytokines (e.g., TNF-α, IL17A-D, IL-22) in people with DS, independent of diagnosis of autoimmunity. Although Tregs are more abundant in DS, functional assays show that CD8+ and CD4+ effector T cells with T21 are resistant to Treg-mediated suppression, regardless of Treg karyotype. Transcriptome analysis of white blood cells and T cells reveals strong signatures of T cell differentiation and activation that correlate positively with IFN hyperactivity. Finally, mass cytometry analysis of 8 IFN-inducible phosphoepitopes demonstrates that T cell subsets with T21 show elevated levels of basal IFN signaling and hypersensitivity to IFN-α stimulation. Therefore, these results point to T cell dysregulation associated with IFN hyperactivity as a contributor to autoimmunity in DS.


Asunto(s)
Autoinmunidad/genética , Síndrome de Down/inmunología , Subgrupos de Linfocitos T/inmunología , Adulto , Autoinmunidad/inmunología , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Estudios de Casos y Controles , Diferenciación Celular/fisiología , Linaje de la Célula , Senescencia Celular , Femenino , Perfilación de la Expresión Génica , Humanos , Interferón-alfa/farmacología , Interferón gamma/inmunología , Activación de Linfocitos/genética , Masculino , Subgrupos de Linfocitos T/citología , Subgrupos de Linfocitos T/efectos de los fármacos , Linfocitos T Reguladores/inmunología , Adulto Joven
7.
Front Immunol ; 10: 2614, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31781113

RESUMEN

The immune response against cancer generated by type-I-interferons (IFN-1) has recently been described. Exogenous and endogenous IFN-α/ß have an important role in immune surveillance and control of tumor development. In addition, IFN-1s have recently emerged as novel DAMPs for the consecutive events connecting innate and adaptive immunity, and they also have been postulated as an essential requirement for induction of immunogenic cell death (ICD). In this context, photodynamic therapy (PDT) has been previously linked to the ICD. PDT consists in the administration of a photosensitizer (PS) and its activation by irradiation of the affected area with visible light producing excitation of the PS. This leads to the local generation of harmful reactive oxygen species (ROS) with limited or no systemic defects. In the current work, Me-ALA inducing PpIX (endogenous PS) was administrated to B16-OVA melanoma cells. PpIX preferentially localized in the endoplasmic reticulum (ER). Subsequent PpIX activation with visible light significantly induced oxidative ER-stress mediated-apoptotic cell death. Under these conditions, the present study was the first to report the in vitro upregulation of IFN-1 expression in response to photodynamic treatment in melanoma. This IFN-α/ß transcripts upregulation was concurrent with IRF-3 phosphorylation at levels that efficiently activated STAT1 and increased ligand receptor (cGAS) and ISG (CXCL10, MX1, ISG15) expression. The IFN-1 pathway has been identified as a critical molecular pathway for the antitumor host immune response, more specifically for the dendritic cells (DCs) functions. In this sense, PDT-treated melanoma cells induced IFN-1-dependent phenotypic maturation of monocyte-derived dendritic cells (DCs) by enhancing co-stimulatory signals (CD80, MHC-II) and tumor-directed chemotaxis. Collectively, our findings showed a new effect of PDT-treated cancer cells by modulating the IFN-1 pathway and its impact on the activation of DCs, emphasizing the potential relevance of PDT in adoptive immunotherapy protocols.


Asunto(s)
Células Dendríticas/inmunología , Interferón Tipo I/inmunología , Melanoma Experimental/tratamiento farmacológico , Fotoquimioterapia , Animales , Apoptosis , Línea Celular Tumoral , Luz , Melanoma Experimental/genética , Melanoma Experimental/inmunología , Ratones Endogámicos C57BL , Ratones Noqueados , Fármacos Fotosensibilizantes/uso terapéutico , Protoporfirinas/uso terapéutico
8.
BioDrugs ; 33(6): 647-659, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31552606

RESUMEN

The adoptive transfer of genetically engineered T cells expressing a chimeric antigen receptor (CAR) has shown remarkable results against B cell malignancies. This immunotherapeutic approach has advanced and expanded rapidly from preclinical models to the recent approval of CAR-T cells to treat lymphomas and leukemia by the Food and Drug Administration (FDA). Ongoing research efforts are focused on employing CAR-T cells as a therapy for other cancers, and enhancing their efficacy and safety by optimizing their design. Here we summarize modifications in the intracellular domain of the CAR that gave rise to first-, second-, third- and next-generation CAR-T cells, together with the impact that these different designs have on CAR-T cell biology and function. Further, we describe how the structure of the antigen-sensing ectodomain can be enhanced, leading to superior CAR-T cell signaling and/or function. Finally we discuss how tissue-specific factors may impact the clinical efficacy of CAR-T cells for bone and the central nervous system, as examples of specific indications that may require further CAR signaling optimization to perform in such inhospitable microenvironments.


Asunto(s)
Receptores de Antígenos de Linfocitos T/inmunología , Receptores Quiméricos de Antígenos/inmunología , Transducción de Señal/inmunología , Linfocitos T/inmunología , Animales , Humanos , Inmunoterapia Adoptiva/métodos
9.
Front Immunol ; 10: 503, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30949170

RESUMEN

An important challenge in cancer immunotherapy is to expand the number of patients that benefit from immune checkpoint inhibitors (CI), a fact that has been related to the pre-existence of an efficient anti-tumor immune response. Different strategies are being proposed to promote tumor immunity and to be used in combined therapies with CI. Recently, we reported that intratumoral administration of naked poly A:U, a dsRNA mimetic empirically used in early clinical trials with some success, delays tumor growth and prolongs mice survival in several murine cancer models. Here, we show that CD103+ cDC1 and, to a much lesser extent CD11b+ cDC2, are the only populations expressing TLR3 at the tumor site, and consequently could be potential targets of poly A:U. Upon poly A:U administration these cells become activated and elicit profound changes in the composition of the tumor immune infiltrate, switching the immune suppressive tumor environment to anti-tumor immunity. The sole administration of naked poly A:U promotes striking changes within the lymphoid compartment, with all the anti-tumoral parameters being enhanced: a higher frequency of CD8+ Granzyme B+ T cells, (lower Treg/CD8+ ratio) and an important expansion of tumor-antigen specific CD8+ T cells. Also, PD1/PDL1 showed an increased expression indicating that neutralization of this axis could be exploited in combination with poly A:U. Our results shed new light to promote further assays in this dsRNA mimetic to the clinical field.


Asunto(s)
Antígenos CD/inmunología , Células Dendríticas/inmunología , Cadenas alfa de Integrinas/inmunología , Linfocitos Infiltrantes de Tumor/inmunología , Neoplasias Experimentales/inmunología , Receptor Toll-Like 3/inmunología , Microambiente Tumoral/inmunología , Animales , Linfocitos B/inmunología , Linfocitos B/patología , Linfocitos T CD8-positivos/patología , Linfocitos Infiltrantes de Tumor/patología , Ratones , Ratones Transgénicos , Neoplasias Experimentales/patología , Poli A-U/farmacología , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/patología
10.
PLoS One ; 12(6): e0179897, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28662055

RESUMEN

The mechanisms that link inflammatory responses to cancer development remain a subject of intense investigation, emphasizing the need to better understand the cellular and molecular pathways that create a tumor promoting microenvironment. The myeloid differentiation primary response protein MyD88 acts as a main adaptor molecule for the signaling cascades initiated from Toll-like receptors (TLRs) and the interleukin 1 receptor (IL-1R). MyD88 has been shown to contribute to tumorigenesis in many inflammation-associated cancer models. In this study, we sought to better define the role of MyD88 in neoplastic cells using a murine melanoma model. Herein, we have demonstrated that MyD88 expression is required to maintain the angiogenic switch that supports B16 melanoma growth. By knocking down MyD88 we reduced TLR-mediated NF-κB activation with no evident effects over cell proliferation and survival. In addition, MyD88 downregulation was associated with a decrease of HIF1α levels and its target gene VEGF, in correlation with an impaired capability to induce capillary sprouting and tube formation of endothelial cells. Melanomas developed from cells lacking MyD88 showed an enhanced secretion of chemoattractant ligands such as CCL2, CXCL10 and CXCL1 and have an improved infiltration of macrophages to the tumor site. Our results imply that cell-autonomous signaling through MyD88 is required to sustain tumor growth and underscore its function as an important positive modulator of tumor angiogenesis.


Asunto(s)
Regulación hacia Abajo , Melanoma Experimental/irrigación sanguínea , Factor 88 de Diferenciación Mieloide/metabolismo , Neovascularización Patológica , Animales , Proliferación Celular , Silenciador del Gen , Melanoma Experimental/metabolismo , Melanoma Experimental/patología , Ratones , Factor 88 de Diferenciación Mieloide/genética
11.
J Immunol ; 196(6): 2860-9, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26880763

RESUMEN

The crucial role that endogenously produced IFN-ß plays in eliciting an immune response against cancer has recently started to be elucidated. Endogenous IFN-ß has an important role in immune surveillance and control of tumor development. Accordingly, the role of TLR agonists as cancer therapeutic agents is being revisited via the strategy of intra/peritumoral injection with the idea of stimulating the production of endogenous type I IFN inside the tumor. Polyadenylic-polyuridylic acid (poly A:U) is a dsRNA mimetic explored empirically in cancer immunotherapy a long time ago with little knowledge regarding its mechanisms of action. In this work, we have in vivo visualized the IFN-ß required for the antitumor immune response elicited in a therapeutic model of poly A:U administration. In this study, we have identified the role of host type I IFNs, cell populations that are sources of IFN-ß in the tumor microenvironment, and other host requirements for tumor control in this model. One single peritumoral dose of poly A:U was sufficient to induce IFN-ß, readily visualized in vivo. IFN-ß production relied mainly on the activation of the transcription factor IFN regulatory factor 3 and the molecule UNC93B1, indicating that TLR3 is required for recognizing poly A:U. CD11c(+) cells were an important, but not the only source of IFN-ß. Host type I IFN signaling was absolutely required for the reduced tumor growth, prolonged mice survival, and the strong antitumor-specific immune response elicited upon poly A:U administration. These findings add new perspectives to the use of IFN-ß-inducing compounds in tumor therapy.


Asunto(s)
Inmunoterapia/métodos , Interferón beta/metabolismo , Poli A-U/administración & dosificación , Animales , Antígeno CD11c/metabolismo , Carcinogénesis , Humanos , Vigilancia Inmunológica , Factor 3 Regulador del Interferón/genética , Factor 3 Regulador del Interferón/metabolismo , Interferón beta/genética , Interferón beta/inmunología , Melanoma Experimental , Proteínas de Transporte de Membrana/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Desnudos , Modelos Animales , Trasplante de Neoplasias , Transducción de Señal , Receptor Toll-Like 3/metabolismo
12.
PLoS One ; 10(10): e0140672, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26474053

RESUMEN

The aging process is accompanied by altered immune system functioning and an increased risk of infection. Dendritic cells (DCs) are antigen-presenting cells that play a key role in both adaptive and innate immunity, but how aging affects DCs and their influence on immunity has not been thoroughly established. Here we examined the function of conventional DCs (cDCs) in old mice after TLR7 stimulation, focusing on their ability to cross-prime CD8+ T cells. Using polyU, a synthetic ssRNA analog, as TLR7 ligand and OVA as an antigen (Ag) model, we found that cDCs from old mice have a poor ability to stimulate a CD8+ T cell-mediated cytotoxic response. cDCs from old mice exhibit alterations in Ag-processing machinery and TLR7 activation. Remarkably, CD8α+ cDCs from old mice have an impaired ability to activate naïve CD8+ T cells and, moreover, a lower capacity to mature and to process exogenous Ag. Taken together, our results suggest that immunosenescence impacts cDC function, affecting the activation of naïve CD8+ T cells and the generation of effector cytotoxic T cells.


Asunto(s)
Envejecimiento/inmunología , Presentación de Antígeno , Linfocitos T CD8-positivos/enzimología , Reactividad Cruzada/inmunología , Células Dendríticas/inmunología , Inmunidad Celular , Glicoproteínas de Membrana/inmunología , Receptor Toll-Like 7/inmunología , Animales , Antígenos/inmunología , Antígenos/farmacología , Reactividad Cruzada/efectos de los fármacos , Femenino , Ratones , Poli U/inmunología , Poli U/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...