Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(1): e2210490120, 2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36574651

RESUMEN

γδ T cells are involved in the control of Staphylococcus aureus infection, but their importance in protection compared to other T cells is unclear. We used a mouse model of systemic S. aureus infection associated with high bacterial load and persistence in the kidney. Infection caused fulminant accumulation of γδ T cells in the kidney. Renal γδ T cells acquired tissue residency and were maintained in high numbers during chronic infection. At day 7, up to 50% of renal γδ T cells produced IL-17A in situ and a large fraction of renal γδ T cells remained IL-17A+ during chronic infection. Controlled depletion revealed that γδ T cells restricted renal S. aureus replication in the acute infection and provided protection during chronic renal infection and upon reinfection. Our results demonstrate that kidney-resident γδ T cells are nonredundant in limiting local S. aureus growth during chronic infection and provide enhanced protection against reinfection.


Asunto(s)
Interleucina-17 , Infecciones Estafilocócicas , Ratones , Animales , Staphylococcus aureus , Receptores de Antígenos de Linfocitos T gamma-delta , Infección Persistente , Reinfección , Riñón , Ratones Endogámicos C57BL
2.
Front Cell Dev Biol ; 9: 647058, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33928082

RESUMEN

Ecto-5'-nucleotidase (CD73) is an enzyme present on the surface of tumor cells whose primary described function is the production of extracellular adenosine. Due to the immunosuppressive properties of adenosine, CD73 is being investigated as a target for new antitumor therapies. We and others have described that CD73 is present at the surface of different CD8+ T cell subsets. Nonetheless, there is limited information as to whether CD73 affects CD8+ T cell proliferation and survival. In this study, we assessed the impact of CD73 deficiency on CD8+ T cells by analyzing their proliferation and survival in antigenic and homeostatic conditions. Results obtained from adoptive transfer experiments demonstrate a paradoxical role of CD73. On one side, it favors the expression of interleukin-7 receptor α chain on CD8+ T cells and their homeostatic survival; on the other side, it reduces the survival of activated CD8+ T cells under antigenic stimulation. Also, upon in vitro antigenic stimulation, CD73 decreases the expression of interleukin-2 receptor α chain and the anti-apoptotic molecule Bcl-2, findings that may explain the reduced CD8+ T cell survival observed in this condition. These results indicate that CD73 has a dual effect on CD8+ T cells depending on whether they are subject to an antigenic or homeostatic stimulus, and thus, special attention should be given to these aspects when considering CD73 blockade in the design of novel antitumor therapies.

3.
Front Cell Dev Biol ; 9: 638037, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33681221

RESUMEN

CD39 and CD73 are ectoenzymes that dephosphorylate ATP into its metabolites; ADP, AMP, and adenosine, and thus are considered instrumental in the development of immunosuppressive microenvironments. We have previously shown that within the CD8+ T cell population, naïve and memory cells express the CD73 ectonucleotidase, while terminally differentiated effector cells are devoid of this enzyme. This evidence suggests that adenosine might exert an autocrine effect on CD8+ T cells during T cell differentiation. To study the possible role of CD73 and adenosine during this process, we compared the expression of the adenosinergic signaling components, the phenotype, and the functional properties between CD73-deficient and WT CD8+ T cells. Upon activation, we observed an upregulation of CD73 expression in CD8+ T cells along with an upregulation of the adenosine A2A receptor. Interestingly, when we differentiated CD8+ T cells to Tc1 cells in vitro, we observed that these cells produce adenosine and that CD73-deficient cells present a higher cytotoxic potential evidenced by an increase in IFN-γ, TNF-α, and granzyme B production. Moreover, CD73-deficient cells presented a increased glucose uptake and higher mitochondrial respiration, indicating that this ectonucleotidase restrict the mitochondrial capacity in CD8+ T cells. In agreement, when adoptively transferred, antigen-specific CD73-deficient CD8+ T cells were more effective in reducing the tumor burden in B16.OVA melanoma-bearing mice and presented lower levels of exhaustion markers than wild type cells. All these data suggest an autocrine effect of CD73-mediated adenosine production, limiting differentiation and cytotoxic T cells' metabolic fitness.

4.
Sci Immunol ; 5(50)2020 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-32769171

RESUMEN

Although it is well established that microbial infections predispose to autoimmune diseases, the underlying mechanisms remain poorly understood. After infection, tissue-resident memory T (TRM) cells persist in peripheral organs and provide immune protection against reinfection. However, whether TRM cells participate in responses unrelated to the primary infection, such as autoimmune inflammation, is unknown. By using high-dimensional single-cell analysis, we identified CD4+ TRM cells with a TH17 signature (termed TRM17 cells) in kidneys of patients with ANCA-associated glomerulonephritis. Experimental models demonstrated that renal TRM17 cells were induced by pathogens infecting the kidney, such as Staphylococcus aureus, Candida albicans, and uropathogenic Escherichia coli, and persisted after the clearance of infections. Upon induction of experimental glomerulonephritis, these kidney TRM17 cells rapidly responded to local proinflammatory cytokines by producing IL-17A and thereby exacerbate renal pathology. Thus, our data show that pathogen-induced TRM17 cells have a previously unrecognized function in aggravating autoimmune disease.


Asunto(s)
Anticuerpos Anticitoplasma de Neutrófilos/inmunología , Infecciones Bacterianas/inmunología , Linfocitos T CD4-Positivos/inmunología , Candidiasis/inmunología , Glomerulonefritis/inmunología , Riñón/inmunología , Subgrupos de Linfocitos T/inmunología , Animales , Enfermedades Autoinmunes/inmunología , Enfermedades Autoinmunes/microbiología , Candida albicans , Glomerulonefritis/microbiología , Humanos , Memoria Inmunológica , Masculino , Ratones Endogámicos DBA , Ratones Transgénicos
5.
Int J Mol Sci ; 21(14)2020 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-32668623

RESUMEN

The P2X7 receptor is a ligand-gated, cation-selective channel whose main physiological ligand is ATP. P2X7 receptor activation may also be triggered by ARTC2.2-dependent ADP ribosylation in the presence of extracellular NAD. Upon activation, this receptor induces several responses, including the influx of calcium and sodium ions, phosphatidylserine externalization, the formation of a non-selective membrane pore, and ultimately cell death. P2X7 receptor activation depends on the availability of extracellular nucleotides, whose concentrations are regulated by the action of extracellular nucleotidases such as CD39 and CD38. The P2X7 receptor has been extensively studied in the context of the immune response, and it has been reported to be involved in inflammasome activation, cytokine production, and the migration of different innate immune cells in response to ATP. In adaptive immune responses, the P2X7 receptor has been linked to T cell activation, differentiation, and apoptosis induction. In this review, we will discuss the evidence of the role of the P2X7 receptor on T cell differentiation and in the control of T cell responses in inflammatory conditions.


Asunto(s)
Receptores Purinérgicos P2X7/fisiología , Subgrupos de Linfocitos T/inmunología , ADP-Ribosil Ciclasa 1/fisiología , Adenosina Trifosfato/fisiología , Animales , Antígenos CD/fisiología , Apoptosis/fisiología , Apirasa/fisiología , Diferenciación Celular/fisiología , Células Dendríticas/citología , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Humanos , Inflamasomas/metabolismo , Activación del Canal Iónico/fisiología , Activación de Linfocitos/fisiología , Ratones , Nucleótidos/metabolismo , Fosfatidilserinas/metabolismo , Ratas , Receptores Purinérgicos P2X7/química , Receptores Purinérgicos P2X7/efectos de los fármacos , Receptores Purinérgicos P2X7/genética , Transducción de Señal/fisiología , Relación Estructura-Actividad , Subgrupos de Linfocitos T/metabolismo
6.
Front Immunol ; 9: 209, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29472932

RESUMEN

Memory CD8+ T cells are ideal candidates for cancer immunotherapy because they can mediate long-term protection against tumors. However, the therapeutic potential of different in vitro-generated CD8+ T cell effector subsets to persist and become memory cells has not been fully characterized. Type 1 CD8+ T (Tc1) cells produce interferon-γ and are endowed with high cytotoxic capacity, whereas IL-17-producing CD8+ T (Tc17) cells are less cytotoxic but display enhanced self-renewal capacity. We sought to evaluate the functional properties of in vitro-generated Tc17 cells and elucidate their potential to become long lasting memory cells. Our results show that in vitro-generated Tc17 cells display a greater in vivo persistence and expansion in response to secondary antigen stimulation compared to Tc1 cells. When transferred into recipient mice, Tc17 cells persist in secondary lymphoid organs, present a recirculation behavior consistent with central memory T cells, and can shift to a Tc1 phenotype. Accordingly, Tc17 cells are endowed with a higher mitochondrial spare respiratory capacity than Tc1 cells and express higher levels of memory-related molecules than Tc1 cells. Together, these results demonstrate that in vitro-generated Tc17 cells acquire a central memory program and provide a lasting reservoir of Tc1 cells in vivo, thus supporting the use of Tc17 lymphocytes in the design of novel and more effective therapies.


Asunto(s)
Antígenos/inmunología , Memoria Inmunológica , Interleucina-17/metabolismo , Subgrupos de Linfocitos T/inmunología , Linfocitos T Citotóxicos/inmunología , Animales , Diferenciación Celular/inmunología , Células Cultivadas , Femenino , Inmunoterapia Adoptiva/métodos , Interleucina-17/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Cultivo Primario de Células , Subgrupos de Linfocitos T/metabolismo , Subgrupos de Linfocitos T/trasplante , Linfocitos T Citotóxicos/metabolismo , Linfocitos T Citotóxicos/trasplante
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...