Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 281(38): 27862-72, 2006 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-16864571

RESUMEN

Aminoacyl-tRNA synthetases catalyze the attachment of cognate amino acids to specific tRNA molecules. To prevent potential errors in protein synthesis caused by misactivation of noncognate amino acids, some synthetases have evolved editing mechanisms to hydrolyze misactivated amino acids (pre-transfer editing) or misacylated tRNAs (post-transfer editing). In the case of post-transfer editing, synthetases employ a separate editing domain that is distinct from the site of amino acid activation, and the mechanism is believed to involve shuttling of the flexible CCA-3' end of the tRNA from the synthetic active site to the site of hydrolysis. The mechanism of pre-transfer editing is less well understood, and in most cases, the exact site of pre-transfer editing has not been conclusively identified. Here, we probe the pre-transfer editing activity of class II prolyl-tRNA synthetases from five species representing all three kingdoms of life. To locate the site of pre-transfer editing, truncation mutants were constructed by deleting the insertion domain characteristic of bacterial prolyl-tRNA synthetase species, which is the site of post-transfer editing, or the N- or C-terminal extension domains of eukaryotic and archaeal enzymes. In addition, the pre-transfer editing mechanism of Escherichia coli prolyl-tRNA synthetase was probed in detail. These studies show that a separate editing domain is not required for pre-transfer editing by prolyl-tRNA synthetase. The aminoacylation active site plays a significant role in preserving the fidelity of translation by acting as a filter that selectively releases non-cognate adenylates into solution, while protecting the cognate adenylate from hydrolysis.


Asunto(s)
Aminoacil-ARNt Sintetasas/fisiología , Edición de ARN , Aminoacilación de ARN de Transferencia , Adenosina Monofosfato/metabolismo , Adenosina Trifosfato/metabolismo , Aminoácidos/metabolismo , Aminoacil-ARNt Sintetasas/química , Sitios de Unión , Hidrólisis , Estructura Terciaria de Proteína
2.
RNA ; 12(7): 1315-22, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16741232

RESUMEN

All histidine tRNA molecules have an extra nucleotide, G-1, at the 5' end of the acceptor stem. In bacteria, archaea, and eukaryotic organelles, G-1 base pairs with C73, while in eukaryotic cytoplasmic tRNAHis, G-1 is opposite A73. Previous studies of Escherichia coli histidyl-tRNA synthetase (HisRS) have demonstrated the importance of the G-1:C73 base pair to tRNAHis identity. Specifically, the 5'-monophosphate of G-1 and the major groove amine of C73 are recognized by E. coli HisRS; these individual atomic groups each contribute approximately 4 kcal/mol to transition state stabilization. In this study, two chemically synthesized 24-nucleotide RNA microhelices, each of which recapitulates the acceptor stem of either E. coli or Saccharomyces cervisiae tRNAHis, were used to facilitate an atomic group "mutagenesis" study of the -1:73 base pair recognition by S. cerevisiae HisRS. Compared with E. coli HisRS, microhelixHis is a much poorer substrate relative to full-length tRNAHis for the yeast enzyme. However, the data presented here suggest that, similar to the E. coli system, the 5' monophosphate of yeast tRNA(His) is critical for aminoacylation by yeast HisRS and contributes approximately 3 kcal/mol to transition state stability. The primary role of the unique -1:73 base pair of yeast tRNAHis appears to be to properly position the critical 5' monophosphate for interaction with the yeast enzyme. Our data also suggest that the eukaryotic HisRS/tRNAHis interaction has coevolved to rely less on specific major groove interactions with base atomic groups than the bacterial system.


Asunto(s)
Evolución Molecular , ARN de Transferencia de Histidina/química , ARN de Transferencia de Histidina/genética , Acilación , Secuencia de Bases , Indicadores y Reactivos , Modelos Moleculares , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , ARN de Hongos/química , ARN de Hongos/genética , ARN de Hongos/metabolismo , ARN de Transferencia de Histidina/metabolismo , Saccharomyces cerevisiae/genética
3.
Biochemistry ; 43(4): 962-9, 2004 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-14744140

RESUMEN

Aminoacylation of a transfer RNA (tRNA) by its cognate aminoacyl-tRNA synthetase relies upon the recognition of specific nucleotides as well as conformational features within the tRNA by the synthetase. In Escherichia coli, the aminoacylation of tRNA(His) by histidyl-tRNA synthetase (HisRS) is highly dependent upon the recognition of the unique G-1:C73 base pair and the 5'-monophosphate. This work investigates the RNA-protein interactions between the HisRS active site and these critical recognition elements. A homology model of the tRNA(His)-HisRS complex was generated and used to design site-specific mutants of possible G-1:C73 contacts. Aminoacylation assays were performed with these HisRS mutants and N-1:C73 tRNA(His) and microhelix(His) variants. Complete suppression of the negative effect of 5'-phosphate deletion by R123A HisRS, as well as the increased discrimination of Q118E HisRS against a 5'-triphosphate, suggests a possible interaction between the 5'-phosphate and active-site residues Arg123 and Gln118 in which these residues create a sterically and electrostatically favorable pocket for the binding of the negatively charged phosphate group. Additionally, a network of interactions appears likely between G-1 and Arg116, Arg123, and Gln118 because mutation of these residues significantly reduced the sensitivity of HisRS to changes at G-1. Our studies also support an interaction previously proposed between Gln118 and C73. Defining the RNA-protein interactions critical for efficient aminoacylation by E. coli HisRS helps to further characterize the active site of this enzyme and improves our understanding of how the unique identity elements in the acceptor stem of tRNA(His) confer specificity.


Asunto(s)
Arginina/química , Citosina/química , Proteínas de Escherichia coli/química , Guanina/química , Histidina-ARNt Ligasa/química , Acilación , Alanina/genética , Arginina/genética , Emparejamiento Base , Sitios de Unión/genética , Simulación por Computador , Proteínas de Escherichia coli/genética , Histidina/genética , Histidina-ARNt Ligasa/genética , Modelos Químicos , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Estructura Secundaria de Proteína/genética , Fosfato de Piridoxal/química , ARN de Transferencia de Histidina/química , Especificidad por Sustrato/genética
4.
J Am Chem Soc ; 126(1): 64-5, 2004 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-14709061

RESUMEN

This work focuses on the RNA-protein interactions necessary for efficient aminoacylation of tRNAHis by Escherichia coli histidyl-tRNA synthetase (HisRS). The E. coli tRNAHis acceptor stem is characterized by a unique "extra" G-1:C73 base pair. Previous in vivo and in vitro studies showed that G-1:C73 is a major recognition element for E. coli HisRS. To further probe the role of the G-1:C73 base pair in specific aminoacylation, we carried out atomic group "mutagenesis" studies. Systematic base analogue substitutions at the -1:73 position of chemically synthesized microhelixHis substrates suggest that the G-1 base serves to position the 5'-monophosphate, which is critical for aminoacylation. Additionally, the C73 and G-1 bases contain major groove exocyclic atomic groups that contribute to HisRS recognition.


Asunto(s)
Escherichia coli/enzimología , Histidina-ARNt Ligasa/química , Histidina-ARNt Ligasa/metabolismo , Aminoacil-ARN de Transferencia/química , Aminoacil-ARN de Transferencia/metabolismo , Emparejamiento Base , Conformación de Ácido Nucleico , Especificidad por Sustrato
5.
J Biol Chem ; 278(16): 14185-95, 2003 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-12560327

RESUMEN

Synthesis of HIV-1 (-) strong-stop DNA is initiated following annealing of the 3' 18 nucleotides (nt) of tRNA(3)(Lys) to the primer binding site (PBS) near the 5' terminus of viral RNA. Here, we have investigated whether sequences downstream of the PBS play a role in promoting efficient (-) strong-stop DNA synthesis. Our findings demonstrate a template requirement for at least 24 bases downstream of the PBS when tRNA(3)(Lys) or an 18-nt RNA complementary to the PBS (R18), but not an 18-nt DNA primer, are used. Additional assays using 18-nt DNA-RNA chimeric primers, as well as melting studies and circular dichroism spectra of 18-nt primer:PBS duplexes, suggest that priming efficiency is correlated with duplex conformation and stability. Interestingly, in the presence of nucleocapsid protein (NC), the 24 downstream bases are dispensable for synthesis primed by tRNA(3)(Lys) but not by R18. We present data supporting the conclusion that NC promotes extended interactions between the anticodon stem and variable loop of tRNA(3)(Lys) and a sequence upstream of the A-rich loop in the template. Taken together, this study leads to new insights into the initiation of HIV-1 reverse transcription and the functional role of NC-facilitated tRNA-template interactions in this process.


Asunto(s)
Transcriptasa Inversa del VIH/metabolismo , Secuencia de Bases , Sitios de Unión , Cápside/metabolismo , Dicroismo Circular , Cartilla de ADN/farmacología , ADN de Cadena Simple , Transcriptasa Inversa del VIH/fisiología , VIH-1/metabolismo , Datos de Secuencia Molecular , Mutación , Conformación de Ácido Nucleico , Proteínas de la Nucleocápside/metabolismo , Plásmidos/metabolismo , Unión Proteica , Conformación Proteica , ARN/metabolismo , ARN de Transferencia de Lisina/metabolismo , Temperatura , Transcripción Genética , Rayos Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...