Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
1.
Cells ; 13(12)2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38920641

RESUMEN

The opioid epidemic continues to be a major public health issue that includes millions of people who inject drugs (PWID). PWID have increased incidence of serious infections, including HIV as well as metabolic and inflammatory sequelae. We sought to discern the extent of systemic alterations in humoral immunity associated with injection drug use, including alterations in the plasma proteome and its regulation of B cell responsiveness. Comprehensive plasma proteomics analysis of HIV negative/hepatitis C negative individuals with a history of recent injection heroin use was performed using mass spectrometry and ELISA. The effects of plasma from PWID and healthy controls on the in vitro proliferation and transcriptional profile of B cell responses to stimulation were determined by flow cytometry and RNA-Seq. The plasma proteome of PWID was distinct from healthy control individuals, with numerous immune-related analytes significantly altered in PWID, including complement (C3, C5, C9), immunoglobulin (IgD, IgM, kappa light chain), and other inflammatory mediators (CXCL4, LPS binding protein, C-reactive protein). The plasma of PWID suppressed the in vitro proliferation of B cells. Transcriptome analysis indicated that PWID plasma treatment increased B cell receptor and CD40 signaling and shifted B cell differentiation from plasma cell-like toward germinal center B cell-like transcriptional profiles. These results indicate that the systemic inflammatory milieu is substantially altered in PWID and may impact their B cell responses.


Asunto(s)
Linfocitos B , Humanos , Linfocitos B/inmunología , Linfocitos B/metabolismo , Masculino , Adulto , Femenino , Proliferación Celular/efectos de los fármacos , Abuso de Sustancias por Vía Intravenosa/sangre , Proteoma/metabolismo , Persona de Mediana Edad
2.
Nat Protoc ; 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38886529

RESUMEN

Microbial split-pool ligation transcriptomics (microSPLiT) is a high-throughput single-cell RNA sequencing method for bacteria. With four combinatorial barcoding rounds, microSPLiT can profile transcriptional states in hundreds of thousands of Gram-negative and Gram-positive bacteria in a single experiment without specialized equipment. As bacterial samples are fixed and permeabilized before barcoding, they can be collected and stored ahead of time. During the first barcoding round, the fixed and permeabilized bacteria are distributed into a 96-well plate, where their transcripts are reverse transcribed into cDNA and labeled with the first well-specific barcode inside the cells. The cells are mixed and redistributed two more times into new 96-well plates, where the second and third barcodes are appended to the cDNA via in-cell ligation reactions. Finally, the cells are mixed and divided into aliquot sub-libraries, which can be stored until future use or prepared for sequencing with the addition of a fourth barcode. It takes 4 days to generate sequencing-ready libraries, including 1 day for collection and overnight fixation of samples. The standard plate setup enables single-cell transcriptional profiling of up to 1 million bacterial cells and up to 96 samples in a single barcoding experiment, with the possibility of expansion by adding barcoding rounds. The protocol requires experience in basic molecular biology techniques, handling of bacterial samples and preparation of DNA libraries for next-generation sequencing. It can be performed by experienced undergraduate or graduate students. Data analysis requires access to computing resources, familiarity with Unix command line and basic experience with Python or R.

3.
Cell Host Microbe ; 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38942027

RESUMEN

Gut microbiota influence anti-tumor immunity, often by producing immune-modulating metabolites. However, microbes consume a variety of metabolites that may also impact host immune responses. We show that tumors grow unchecked in the omenta of microbe-replete mice due to immunosuppressive Tregs. By contrast, omental tumors in germ-free, neomycin-treated mice or mice colonized with altered Schaedler's flora (ASF) are spontaneously eliminated by CD8+ T cells. These mice lack Proteobacteria capable of arginine catabolism, causing increases in serum arginine that activate the mammalian target of the rapamycin (mTOR) pathway in Tregs to reduce their suppressive capacity. Transfer of the Proteobacteria, Escherichia coli (E. coli), but not a mutant unable to catabolize arginine, to ASF mice reduces arginine levels, restores Treg suppression, and prevents tumor clearance. Supplementary arginine similarly decreases Treg suppressive capacity, increases CD8+ T cell effectiveness, and reduces tumor burden. Thus, microbial consumption of arginine alters anti-tumor immunity, offering potential therapeutic strategies for tumors in visceral adipose tissue.

4.
Eur Heart J Case Rep ; 8(5): ytae151, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38751900

RESUMEN

Background: The use of mechanical circulatory support (MCS) has markedly increased over the last decade, so have the inter-hospital transfers, with the aim of being able to offer advanced heart failure (AHF) therapies and centralizing patients to tertiary centres. Case summary: In this article, we present the first in Europe long-distance air transfer of a patient supported by veno-arterial extracorporeal membrane oxygenator and Impella (ECPELLA), as a bridge to successful heart transplant. In our case report, a foreign young patient with AHF due to familiar cardiomyopathy required multiple MCS devices to achieve cardiovascular stability. After appropriate planning and multidisciplinary discussion, the patient was transferred on MCS to his country of origin via a fixed-wing airplane, in order to be assessed for heart transplantation. During take-off, the Impella flows temporarily dropped and a suction alarm was displayed; however, this rectified without intervention, and the rest of the flight was uneventful. One month after transfer, the patient underwent successful heart transplantation and remained clinically stable during the 12-month follow-up. Discussion: Our experience links together the current challenges in the evolving AHF strategies and the increased need for inter-facility cooperation. Both these clinical and logistic challenges appear to lead to possible improved outcomes, after appropriate assessment, training, and accurate planning. Our experience provides useful information on feasibility of long-distance transport of patients supported by ECPELLA in Europe.

5.
Nat Commun ; 15(1): 3140, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38605083

RESUMEN

Pig-to-human xenotransplantation is rapidly approaching the clinical arena; however, it is unclear which immunomodulatory regimens will effectively control human immune responses to pig xenografts. Here, we transplant a gene-edited pig kidney into a brain-dead human recipient on pharmacologic immunosuppression and study the human immune response to the xenograft using spatial transcriptomics and single-cell RNA sequencing. Human immune cells are uncommon in the porcine kidney cortex early after xenotransplantation and consist of primarily myeloid cells. Both the porcine resident macrophages and human infiltrating macrophages express genes consistent with an alternatively activated, anti-inflammatory phenotype. No significant infiltration of human B or T cells into the porcine kidney xenograft is detectable. Altogether, these findings provide proof of concept that conventional pharmacologic immunosuppression may be able to restrict infiltration of human immune cells into the xenograft early after compatible pig-to-human kidney xenotransplantation.


Asunto(s)
Edición Génica , Riñón , Animales , Porcinos , Humanos , Animales Modificados Genéticamente , Xenoinjertos , Trasplante Heterólogo , Rechazo de Injerto/genética
6.
Aging Cell ; 23(6): e14133, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38459711

RESUMEN

Chronic low-grade inflammation, particularly elevated tumor necrosis factor (TNF) levels, occurs due to advanced age and is associated with greater susceptibility to infection. One reason for this is age-dependent macrophage dysfunction (ADMD). Herein, we use the adoptive transfer of alveolar macrophages (AM) from aged mice into the airway of young mice to show that inherent age-related defects in AM were sufficient to increase the susceptibility to Streptococcus pneumoniae, a Gram-positive bacterium and the leading cause of community-acquired pneumonia. MAPK phosphorylation arrays using AM lysates from young and aged wild-type (WT) and TNF knockout (KO) mice revealed multilevel TNF-mediated suppression of kinase activity in aged mice. RNAseq analyses of AM validated the suppression of MAPK signaling as a consequence of TNF during aging. Two regulatory phosphatases that suppress MAPK signaling, Dusp1 and Ptprs, were confirmed to be upregulated with age and as a result of TNF exposure both ex vivo and in vitro. Dusp1 is known to be responsible for glucocorticoid-mediated immune suppression, and dexamethasone treatment increased Dusp1 and Ptprs expression in cells and recapitulated the ADMD phenotype. In young mice, treatment with dexamethasone increased the levels of Dusp1 and Ptprs and their susceptibility to infection. TNF-neutralizing antibody reduced Dusp1 and Ptprs levels in AM from aged mice and reduced pneumonia severity following bacterial challenge. We conclude that chronic exposure to TNF increases the expression of the glucocorticoid-associated MAPK signaling suppressors, Dusp1 and Ptprs, which inhibits AM activation and increases susceptibility to bacterial pneumonia in older adults.


Asunto(s)
Glucocorticoides , Macrófagos Alveolares , Factor de Necrosis Tumoral alfa , Animales , Ratones , Envejecimiento , Susceptibilidad a Enfermedades , Fosfatasa 1 de Especificidad Dual/metabolismo , Fosfatasa 1 de Especificidad Dual/genética , Glucocorticoides/farmacología , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/inmunología , Ratones Endogámicos C57BL , Ratones Noqueados , Neumonía/inmunología , Streptococcus pneumoniae , Factor de Necrosis Tumoral alfa/metabolismo , Femenino
7.
Eur J Appl Physiol ; 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38489034

RESUMEN

With ascent to high altitude (HA), compensatory increases in cerebral blood flow and oxygen delivery must occur to preserve cerebral metabolism and consciousness. We hypothesized that this compensation in cerebral blood flow and oxygen delivery preserves tolerance to simulated hemorrhage (via lower body negative pressure, LBNP), such that tolerance is similar during sustained exposure to HA vs. low altitude (LA). Healthy humans (4F/4 M) participated in LBNP protocols to presyncope at LA (1130 m) and 5-7 days following ascent to HA (3800 m). Internal carotid artery (ICA) blood flow, cerebral delivery of oxygen (CDO2) through the ICA, and cerebral tissue oxygen saturation (ScO2) were determined. LBNP tolerance was similar between conditions (LA: 1276 ± 304 s vs. HA: 1208 ± 306 s; P = 0.58). Overall, ICA blood flow and CDO2 were elevated at HA vs. LA (P ≤ 0.01) and decreased with LBNP under both conditions (P < 0.0001), but there was no effect of altitude on ScO2 responses (P = 0.59). Thus, sustained exposure to hypobaric hypoxia did not negatively impact tolerance to simulated hemorrhage. These data demonstrate the robustness of compensatory physiological mechanisms that preserve human cerebral blood flow and oxygen delivery during sustained hypoxia, ensuring cerebral tissue metabolism and neuronal function is maintained.

9.
J Appl Physiol (1985) ; 135(6): 1312-1322, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37881852

RESUMEN

During cerebral hypoperfusion induced by lower body negative pressure (LBNP), cerebral tissue oxygenation is protected with oscillatory arterial pressure and cerebral blood flow at low frequencies (0.1 Hz and 0.05 Hz), despite no protection of cerebral blood flow or oxygen delivery. However, hypocapnia induced by LBNP contributes to cerebral blood flow reductions, and may mask potential protective effects of hemodynamic oscillations on cerebral blood flow. We hypothesized that under isocapnic conditions, forced oscillations of arterial pressure and blood flow at 0.1 Hz and 0.05 Hz would attenuate reductions in extra- and intracranial blood flow during simulated hemorrhage using LBNP. Eleven human participants underwent three LBNP profiles: a nonoscillatory condition (0 Hz) and two oscillatory conditions (0.1 Hz and 0.05 Hz). End-tidal (et) CO2 and etO2 were clamped at baseline values using dynamic end-tidal forcing. Cerebral tissue oxygenation (ScO2), internal carotid artery (ICA) blood flow, and middle cerebral artery velocity (MCAv) were measured. With clamped etCO2, neither ICA blood flow (ANOVA P = 0.93) nor MCAv (ANOVA P = 0.36) decreased with LBNP, and these responses did not differ between the three profiles (ICA blood flow: 0 Hz: 2.2 ± 5.4%, 0.1 Hz: -0.4 ± 6.6%, 0.05 Hz: 0.2 ± 4.8%; P = 0.56; MCAv: 0 Hz: -2.3 ± 7.8%, 0.1 Hz: -1.3 ± 6.1%, 0.05 Hz: -3.1 ± 5.0%; P = 0.87). Similarly, ScO2 did not decrease with LBNP (ANOVA P = 0.21) nor differ between the three profiles (0 Hz: -2.6 ± 3.3%, 0.1 Hz: -1.6 ± 1.5%, 0.05 Hz: -0.2 ± 2.8%; P = 0.13). Contrary to our hypothesis, cerebral blood flow and tissue oxygenation were protected during LBNP with isocapnia, regardless of whether hemodynamic oscillations were induced.NEW & NOTEWORTHY We examined the role of forcing oscillations in arterial pressure and blood flow at 0.1 Hz and 0.05 Hz on extra- and intracranial blood flow and cerebral tissue oxygenation during simulated hemorrhage (using lower body negative pressure, LBNP) under isocapnic conditions. Contrary to our hypothesis, both cerebral blood flow and cerebral tissue oxygenation were completely protected during simulated hemorrhage with isocapnia, regardless of whether oscillations in arterial pressure and cerebral blood flow were induced. These findings highlight the protective effect of preventing hypocapnia on cerebral blood flow under simulated hemorrhage conditions.


Asunto(s)
Hemodinámica , Hipocapnia , Humanos , Presión Arterial/fisiología , Circulación Cerebrovascular/fisiología , Arteria Cerebral Media/fisiología , Hemorragia , Presión Negativa de la Región Corporal Inferior , Velocidad del Flujo Sanguíneo/fisiología , Presión Sanguínea
10.
Immunity ; 56(10): 2358-2372.e5, 2023 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-37699392

RESUMEN

Lung-resident memory B cells (lung-BRMs) differentiate into plasma cells after reinfection, providing enhanced pulmonary protection. Here, we investigated the determinants of lung-BRM differentiation upon influenza infection. Kinetic analyses revealed that influenza nucleoprotein (NP)-specific BRMs preferentially differentiated early after infection and required T follicular helper (Tfh) cell help. BRM differentiation temporally coincided with transient interferon (IFN)-γ production by Tfh cells. Depletion of IFN-γ in Tfh cells prevented lung-BRM differentiation and impaired protection against heterosubtypic infection. IFN-γ was required for expression of the transcription factor T-bet by germinal center (GC) B cells, which promoted differentiation of a CXCR3+ GC B cell subset that were precursors of lung-BRMs and CXCR3+ memory B cells in the mediastinal lymph node. Absence of IFN-γ signaling or T-bet in GC B cells prevented CXCR3+ pre-memory precursor development and hampered CXCR3+ memory B cell differentiation and subsequent lung-BRM responses. Thus, Tfh-cell-derived IFN-γ is critical for lung-BRM development and pulmonary immunity, with implications for vaccination strategies targeting BRMs.


Asunto(s)
Gripe Humana , Linfocitos T Colaboradores-Inductores , Humanos , Interferón gamma/metabolismo , Células B de Memoria , Células T Auxiliares Foliculares/metabolismo , Centro Germinal , Diferenciación Celular , Receptores CXCR3/metabolismo
11.
bioRxiv ; 2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37609309

RESUMEN

About half of patients with Crohn's disease (CD) develop selective serum IgG response to flagellin proteins of the Lachnospiraceae family. Here, we identified a dominant B cell peptide epitope in CD, locating in the highly conserved "hinge region" between the D0 and D1 domains at the amino-terminus of Lachnospiraceae flagellins. Serum IgG reactive to this epitope is present at an elevated level in adult CD patients and in pediatric CD patients at diagnosis. Most importantly, high levels of serum IgG to the hinge epitope were found in most infants from 3 different geographic regions (Uganda, Sweden, and the USA) at one year of age. This vigorous homeostatic response decrements with age as it is not present in healthy adults. These data identify a distinct subset of CD patients, united by a shared reactivity to this dominant flagellin epitope that may represent failure of a homeostatic response beginning in infancy.

12.
Am J Physiol Heart Circ Physiol ; 325(4): H909-H916, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37594485

RESUMEN

Sex differences in resting cerebral hemodynamics decline with aging. Given that acute resistance exercise (RE) is a hypertensive challenge, it may reveal sex-dependent abnormalities in cerebral hemodynamics. Thus, we hypothesized that cerebral blood velocity and pulsatility responses to RE would be sex-dependent in older adults. Fourteen older females and 11 males (50-68 yr) completed a high-intensity unilateral isokinetic knee flexion/extension exercise. Measurements were collected at baseline, immediately, 5- and 30-min post-RE. Blood pressure was measured via finger photoplethysmography. Mean middle cerebral artery blood velocity (MCAv) and pulsatility were assessed via transcranial Doppler ultrasound. Carotid pulsatility was obtained via duplex ultrasound. MCAv increased immediately after RE in older females [mean difference (d) = 6.02, 95% CI: 1.66 to 10.39 cm/s, P < 0.001] but not in males (d = -0.72, 95% CI: -3.83 to 5.27 cm/s, P = 0.99), followed by similar reductions 5-min post-RE in older females (d = -4.40, 95% CI: -8.81 to -0.10 cm/s, P = 0.045) and males (d = -6.41, 95% CI: -11.19 to -1.62 cm/s, P = 0.003). MCAv pulsatility increased similarly in older females (d = 0.24, 95% CI: 0.11 to 0.40, P < 0.001) and males (d = 0.38, 95% CI: 0.20 to 0.53, P < 0.001), persisting 5-min post-RE. Older females showed smaller increases in carotid pulsatility immediately after RE (d = 0.18, 95% CI: 0.03 to 0.38, P = 0.01) than males (d = 0.48, 95% CI: 0.26 to 0.68, P < 0.001). An exercise-mediated hypertensive stimulus revealed differential sex responses in MCAv and carotid pulsatility but not in cerebral pulsatility. Cerebral pulsatility findings suggest a similar sex susceptibility to cerebrovascular abnormalities following exercise-mediated hypertensive stimulus in older adults.NEW & NOTEWORTHY Sex differences in resting cerebral hemodynamics decline with advancing age as females experience larger reductions in cerebral blood velocity and steeper pulsatility increases than males. However, an exercise-mediated hypertensive stimulus might reveal sex differences in cerebral hemodynamics not apparent at rest. Following high-intensity resistance exercise, older females but not males exhibit increases in cerebral blood velocity, despite similar increases in cerebral pulsatility. The susceptibility to cerebrovascular abnormalities following exercise-mediated hypertensive stimulus appears similar between sexes.


Asunto(s)
Entrenamiento de Fuerza , Femenino , Masculino , Humanos , Anciano , Ejercicio Físico , Terapia por Ejercicio , Caracteres Sexuales , Presión Sanguínea
13.
Front Immunol ; 14: 1158493, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37575256

RESUMEN

Introduction: Data from patient cohorts and mouse models of atopic dermatitis, food allergy and asthma strongly support a role for chitinase-3-like-1 protein (CHI3L1) in allergic disease. Methods: To address whether Chi3l1 also contributes to TH2 responses following nematode infection, we infected Chi3l1 -/- mice with Heligmosomoides polygyrus (Hp) and analyzed T cell responses. Results: As anticipated, we observed impaired TH2 responses in Hp-infected Chi3l1 -/- mice. However, we also found that T cell intrinsic expression of Chi3l1 was required for ICOS upregulation following activation of naïve CD4 T cells and was necessary for the development of the IL-4+ TFH subset, which supports germinal center B cell reactions and IgE responses. We also observed roles for Chi3l1 in TFH, germinal center B cell, and IgE responses to alum-adjuvanted vaccination. While Chi3l1 was critical for IgE humoral responses it was not required for vaccine or infection-induced IgG1 responses. Discussion: These results suggest that Chi3l1 modulates IgE responses, which are known to be highly dependent on IL-4-producing TFH cells.


Asunto(s)
Quitinasas , Helmintiasis , Helmintos , Animales , Ratones , Quitinasas/metabolismo , Inmunoglobulina E , Interleucina-4/metabolismo , Linfocitos T Colaboradores-Inductores
14.
JACC Cardiovasc Interv ; 16(14): 1707-1720, 2023 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-37495347

RESUMEN

Percutaneous ventricular assist devices (pVADs) are increasingly being used because of improved experience and availability. The Impella (Abiomed), a percutaneous microaxial, continuous-flow, short-term ventricular assist device, requires meticulous postimplantation management to avoid the 2 most frequent complications, namely, bleeding and hemolysis. A standardized approach to the prevention, detection, and treatment of these complications is mandatory to improve outcomes. The risk for hemolysis is mostly influenced by pump instability, resulting from patient- or device-related factors. Upfront echocardiographic assessment, frequent monitoring, and prompt intervention are essential. The precarious hemostatic balance during pVAD support results from the combination of a procoagulant state, due to critical illness and contact pathway activation, together with a variety of factors aggravating bleeding risk. Preventive strategies and appropriate management, adapted to the impact of the bleeding, are crucial. This review offers a guide to physicians to tackle these device-related complications in this critically ill pVAD-supported patient population.


Asunto(s)
Corazón Auxiliar , Intervención Coronaria Percutánea , Humanos , Resultado del Tratamiento , Hemólisis , Intervención Coronaria Percutánea/efectos adversos , Corazón Auxiliar/efectos adversos , Hemorragia/diagnóstico por imagen , Hemorragia/etiología , Hemorragia/prevención & control , Choque Cardiogénico
15.
Sci Immunol ; 8(84): eadc9081, 2023 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-37327322

RESUMEN

Multiple mechanisms restrain inflammation in neonates, most likely to prevent tissue damage caused by overly robust immune responses against newly encountered pathogens. Here, we identify a population of pulmonary dendritic cells (DCs) that express intermediate levels of CD103 (CD103int) and appear in the lungs and lung-draining lymph nodes of mice between birth and 2 weeks of age. CD103int DCs express XCR1 and CD205 and require expression of the transcription factor BATF3 for development, suggesting that they belong to the cDC1 lineage. In addition, CD103int DCs express CCR7 constitutively and spontaneously migrate to the lung-draining lymph node, where they promote stromal cell maturation and lymph node expansion. CD103int DCs mature independently of microbial exposure and TRIF- or MyD88-dependent signaling and are transcriptionally related to efferocytic and tolerogenic DCs as well as mature, regulatory DCs. Correlating with this, CD103int DCs show limited ability to stimulate proliferation and IFN-γ production by CD8+ T cells. Moreover, CD103int DCs acquire apoptotic cells efficiently, in a process that is dependent on the expression of the TAM receptor, Mertk, which drives their homeostatic maturation. The appearance of CD103int DCs coincides with a temporal wave of apoptosis in developing lungs and explains, in part, dampened pulmonary immunity in neonatal mice. Together, these data suggest a mechanism by which DCs sense apoptotic cells at sites of noninflammatory tissue remodeling, such as tumors or the developing lungs, and limit local T cell responses.


Asunto(s)
Linfocitos T CD8-positivos , Neumonía , Ratones , Animales , Tirosina Quinasa c-Mer/metabolismo , Células Dendríticas , Pulmón , Apoptosis
16.
Microbiol Spectr ; 11(4): e0472822, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37318331

RESUMEN

Due to antigenic drift and shift of influenza A viruses (IAV) and the tendency to elicit predominantly strain-specific antibodies, humanity remains susceptible to new strains of seasonal IAV and is at risk from viruses with pandemic potential for which limited or no immunity may exist. The genetic drift of H3N2 IAV is specifically pronounced, resulting in two distinct clades since 2014. Here, we demonstrate that immunization with a seasonal inactivated influenza vaccine (IIV) results in increased levels of H3N2 IAV-specific serum antibodies against hemagglutinin (HA) and neuraminidase (NA). Detailed analysis of the H3N2 B cell response indicated expansion of H3N2-specific peripheral blood plasmablasts 7 days after IIV immunization which expressed monoclonal antibodies (MAbs) with broad and potent antiviral activity against many H3N2 IAV strains as well as prophylactic and therapeutic activity in mice. These H3N2-specific B cell clonal lineages persisted in CD138+ long-lived bone marrow plasma cells. These results demonstrate that IIV-induced H3N2 human MAbs can protect and treat influenza virus infection in vivo and suggest that IIV can induce a subset of IAV H3N2-specific B cells with broad protective potential, a feature that warrants further study for universal influenza vaccine development. IMPORTANCE Influenza A virus (IAV) infections continue to cause substantial morbidity and mortality despite the availability of seasonal vaccines. The extensive genetic variability in seasonal and potentially pandemic influenza strains necessitates new vaccine strategies that can induce universal protection by focusing the immune response on generating protective antibodies against conserved targets within the influenza virus hemagglutinin and neuraminidase proteins. We have demonstrated that seasonal immunization with inactivated influenza vaccine (IIV) stimulates H3N2-specific monoclonal antibodies in humans that are broad and potent in their neutralization of virus in vitro. These antibodies also provide protection from H3N2 IAV in a mouse model of infection. Furthermore, they persist in the bone marrow, where they are expressed by long-lived antibody-producing plasma cells. This significantly demonstrates that seasonal IIV can induce a subset of H3N2-specific B cells with broad protective potential, a process that if further studied and enhanced could aid in the development of a universal influenza vaccine.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Virus de la Influenza A , Vacunas contra la Influenza , Gripe Humana , Humanos , Animales , Ratones , Gripe Humana/prevención & control , Vacunas contra la Influenza/genética , Hemaglutininas , Subtipo H3N2 del Virus de la Influenza A/genética , Neuraminidasa , Anticuerpos Monoclonales , Subtipo H1N1 del Virus de la Influenza A/genética , Anticuerpos Antivirales , Virus de la Influenza A/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética
17.
bioRxiv ; 2023 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-37034637

RESUMEN

Donor-specific antibody (DSA) responses against human leukocyte antigen (HLA) proteins mismatched between kidney transplant donors and recipients cause allograft loss. Using single-cell, molecular, structural, and proteomic techniques, we profiled the HLA-specific (alloreactive) B cell response in kidney and blood of a transplant recipient with antibody-mediated rejection (AMR). We identified 14 distinct alloreactive B cell lineages, which spanned the rejected organ and blood and expressed high-affinity anti-donor HLA-specific B cell receptors, many of which were clonally linked to circulating DSA. The alloreactive B cell response was focused on exposed, solvent-accessible mismatched HLA residues, while also demonstrating extensive contacts with self-HLA residues. Consistent with structural evidence of self-recognition, measurable self-reactivity by donor-specific B cells was common and positively correlated with anti-donor affinity maturation. Thus, allo- and self-reactive signatures appeared to converge, suggesting that during AMR, the recognition of non-self and breaches of tolerance conspire to produce a pathogenic donor-specific adaptive response.

18.
Cell Mol Immunol ; 20(6): 651-665, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37046042

RESUMEN

Defective interleukin-6 (IL-6) signaling has been associated with Th2 bias and elevated IgE levels. However, the underlying mechanism by which IL-6 prevents the development of Th2-driven diseases remains unknown. Using a model of house dust mite (HDM)-induced Th2 cell differentiation and allergic airway inflammation, we showed that IL-6 signaling in allergen-specific T cells was required to prevent Th2 cell differentiation and the subsequent IgE response and allergic inflammation. Th2 cell lineage commitment required strong sustained IL-2 signaling. We found that IL-6 turned off IL-2 signaling during early T-cell activation and thus inhibited Th2 priming. Mechanistically, IL-6-driven inhibition of IL-2 signaling in responding T cells was mediated by upregulation of Suppressor Of Cytokine Signaling 3 (SOCS3). This mechanism could be mimicked by pharmacological Janus Kinase-1 (JAK1) inhibition. Collectively, our results identify an unrecognized mechanism that prevents the development of unwanted Th2 cell responses and associated diseases and outline potential preventive interventions.


Asunto(s)
Interleucina-6 , Células Th2 , Humanos , Células Th2/metabolismo , Interleucina-2 , Inflamación , Inmunoglobulina E , Citocinas/metabolismo , Proteína 3 Supresora de la Señalización de Citocinas
19.
Mucosal Immunol ; 16(3): 287-301, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36931600

RESUMEN

Immunoglobulin (Ig) E is central to the pathogenesis of allergic conditions, including allergic fungal rhinosinusitis. However, little is known about IgE antibody secreting cells (ASCs). We performed single-cell RNA sequencing from cluster of differentiation (CD)19+ and CD19- ASCs of nasal polyps from patients with allergic fungal rhinosinusitis (n = 3). Nasal polyps were highly enriched in CD19+ ASCs. Class-switched IgG and IgA ASCs were dominant (95.8%), whereas IgE ASCs were rare (2%) and found only in the CD19+ compartment. Through Ig gene repertoire analysis, IgE ASCs shared clones with IgD-CD27- "double-negative" B cells, IgD+CD27+ unswitched memory B cells, and IgD-CD27+ switched memory B cells, suggesting ontogeny from both IgD+ and memory B cells. Transcriptionally, mucosal IgE ASCs upregulate pathways related to antigen presentation, chemotaxis, B cell receptor stimulation, and survival compared with non-IgE ASCs. Additionally, IgE ASCs have a higher expression of genes encoding lysosomal-associated protein transmembrane 5 (LAPTM5) and CD23, as well as upregulation of CD74 (receptor for macrophage inhibitory factor), store-operated Calcium entry-associated regulatory factor (SARAF), and B cell activating factor receptor (BAFFR), which resemble an early minted ASC phenotype. Overall, these findings reinforce the paradigm that human ex vivo mucosal IgE ASCs have a more immature plasma cell phenotype than other class-switched mucosal ASCs and suggest unique functional roles for mucosal IgE ASCs in concert with Ig secretion.


Asunto(s)
Pólipos Nasales , Humanos , Inmunoglobulina E , Células Productoras de Anticuerpos , Mucosa Nasal , Fenotipo , Análisis de la Célula Individual
20.
Immunity ; 56(4): 847-863.e8, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-36958335

RESUMEN

Seasonal influenza vaccination elicits hemagglutinin (HA)-specific memory B (Bmem) cells, and although multiple Bmem cell populations have been characterized, considerable heterogeneity exists. We found that HA-specific human Bmem cells differed in the expression of surface marker FcRL5 and transcriptional factor T-bet. FcRL5+T-bet+ Bmem cells were transcriptionally similar to effector-like memory cells, while T-betnegFcRL5neg Bmem cells exhibited stem-like central memory properties. FcRL5+ Bmem cells did not express plasma-cell-commitment factors but did express transcriptional, epigenetic, metabolic, and functional programs that poised these cells for antibody production. Accordingly, HA+ T-bet+ Bmem cells at day 7 post-vaccination expressed intracellular immunoglobulin, and tonsil-derived FcRL5+ Bmem cells differentiated more rapidly into antibody-secreting cells (ASCs) in vitro. The T-bet+ Bmem cell response positively correlated with long-lived humoral immunity, and clonotypes from T-bet+ Bmem cells were represented in the secondary ASC response to repeat vaccination, suggesting that this effector-like population predicts influenza vaccine durability and recall potential.


Asunto(s)
Vacunas contra la Influenza , Gripe Humana , Humanos , Gripe Humana/prevención & control , Formación de Anticuerpos , Células B de Memoria , Vacunación , Memoria Inmunológica , Anticuerpos Antivirales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...