Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 620(7972): 163-171, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37495694

RESUMEN

An outstanding mystery in biology is why some species, such as the axolotl, can regenerate tissues whereas mammals cannot1. Here, we demonstrate that rapid activation of protein synthesis is a unique feature of the injury response critical for limb regeneration in the axolotl (Ambystoma mexicanum). By applying polysome sequencing, we identify hundreds of transcripts, including antioxidants and ribosome components that are selectively activated at the level of translation from pre-existing messenger RNAs in response to injury. By contrast, protein synthesis is not activated in response to non-regenerative digit amputation in the mouse. We identify the mTORC1 pathway as a key upstream signal that mediates tissue regeneration and translational control in the axolotl. We discover unique expansions in mTOR protein sequence among urodele amphibians. By engineering an axolotl mTOR (axmTOR) in human cells, we show that these changes create a hypersensitive kinase that allows axolotls to maintain this pathway in a highly labile state primed for rapid activation. This change renders axolotl mTOR more sensitive to nutrient sensing, and inhibition of amino acid transport is sufficient to inhibit tissue regeneration. Together, these findings highlight the unanticipated impact of the translatome on orchestrating the early steps of wound healing in a highly regenerative species and provide a missing link in our understanding of vertebrate regenerative potential.


Asunto(s)
Ambystoma mexicanum , Evolución Biológica , Biosíntesis de Proteínas , Regeneración , Serina-Treonina Quinasas TOR , Animales , Humanos , Ratones , Ambystoma mexicanum/fisiología , Secuencia de Aminoácidos , Extremidades/fisiología , Regeneración/fisiología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Cicatrización de Heridas , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Especificidad de la Especie , Antioxidantes/metabolismo , Nutrientes/metabolismo , Polirribosomas/genética , Polirribosomas/metabolismo
2.
Dev Cell ; 56(14): 2089-2102.e11, 2021 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-34242585

RESUMEN

In ribosomopathies, perturbed expression of ribosome components leads to tissue-specific phenotypes. What accounts for such tissue-selective manifestations as a result of mutations in the ribosome, a ubiquitous cellular machine, has remained a mystery. Combining mouse genetics and in vivo ribosome profiling, we observe limb-patterning phenotypes in ribosomal protein (RP) haploinsufficient embryos, and we uncover selective translational changes of transcripts that controlling limb development. Surprisingly, both loss of p53, which is activated by RP haploinsufficiency, and augmented protein synthesis rescue these phenotypes. These findings are explained by the finding that p53 functions as a master regulator of protein synthesis, at least in part, through transcriptional activation of 4E-BP1. 4E-BP1, a key translational regulator, in turn, facilitates selective changes in the translatome downstream of p53, and this thereby explains how RP haploinsufficiency may elicit specificity to gene expression. These results provide an integrative model to help understand how in vivo tissue-specific phenotypes emerge in ribosomopathies.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de Ciclo Celular/metabolismo , Extremidades/embriología , Haploinsuficiencia , Biosíntesis de Proteínas , Procesamiento Proteico-Postraduccional , Proteínas Ribosómicas/fisiología , Proteína p53 Supresora de Tumor/fisiología , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Tipificación del Cuerpo , Proteínas de Ciclo Celular/genética , Regulación del Desarrollo de la Expresión Génica , Ratones , Ratones Noqueados , Fenotipo , Ribosomas/metabolismo
4.
J Exp Biol ; 224(7)2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33653719

RESUMEN

The ABC transporter ABCB1 plays an important role in the disposition of xenobiotics. Embryos of most species express high levels of this transporter in early development as a protective mechanism, but its native substrates are not known. Here, we used larvae of the sea urchin Strongylocentrotus purpuratus to characterize the early life expression and role of Sp-ABCB1a, a homolog of ABCB1. The results indicate that while Sp-ABCB1a is initially expressed ubiquitously, it becomes enriched in the developing gut. Using optimized CRISPR/Cas9 gene editing methods to achieve high editing efficiency in the F0 generation, we generated ABCB1a crispant embryos with significantly reduced transporter efflux activity. When infected with the opportunistic pathogen Vibrio diazotrophicus, Sp-ABCB1a crispant larvae demonstrated significantly stronger gut inflammation, immunocyte migration and cytokine Sp-IL-17 induction, as compared with infected control larvae. The results suggest an ancestral function of ABCB1 in host-microbial interactions, with implications for the survival of invertebrate larvae in the marine microbial environment.


Asunto(s)
Sistemas CRISPR-Cas , Erizos de Mar , Animales , Sistemas CRISPR-Cas/genética , Inmunidad , Larva/genética , Mutagénesis , Vibrio
6.
Nat Cell Biol ; 23(2): 198-208, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33526902

RESUMEN

Cells achieve highly efficient and accurate communication through cellular projections such as neurites and filopodia, yet there is a lack of genetically encoded tools that can selectively manipulate their composition and dynamics. Here, we present a versatile optogenetic toolbox of artificial multi-headed myosin motors that can move bidirectionally within long cellular extensions and allow for the selective transport of GFP-tagged cargo with light. Utilizing these engineered motors, we could transport bulky transmembrane receptors and organelles as well as actin remodellers to control the dynamics of both filopodia and neurites. Using an optimized in vivo imaging scheme, we further demonstrate that, upon limb amputation in axolotls, a complex array of filopodial extensions is formed. We selectively modulated these filopodial extensions and showed that they re-establish a Sonic Hedgehog signalling gradient during regeneration. Considering the ubiquitous existence of actin-based extensions, this toolbox shows the potential to manipulate cellular communication with unprecedented accuracy.


Asunto(s)
Comunicación Celular , Miosinas/metabolismo , Optogenética , Ingeniería de Proteínas , Citoesqueleto de Actina/metabolismo , Ambystoma mexicanum/fisiología , Animales , Transporte Biológico , Línea Celular , Supervivencia Celular/efectos de la radiación , Extremidades/fisiología , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Hedgehog/metabolismo , Cinética , Luz , Ratones , Células Madre Embrionarias de Ratones/metabolismo , Neuritas/metabolismo , Seudópodos/metabolismo , Regeneración/fisiología , Transducción de Señal , Vesículas Transportadoras/metabolismo
7.
Methods Cell Biol ; 150: 105-123, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30777173

RESUMEN

Although sea urchins are one of the oldest and most widely used marine model systems, few species have been routinely kept in culture through multiple generations. The workhorse of the field is the purple urchin Strongylocentrotus purpuratus. However, one disadvantage of S. purpuratus is its long generation time, making it impractical as a model for generating and maintaining transgenic lines. In an effort to develop a sea urchin that is suitable for transgenerational experiments and the generation of transgenic lines, we have focused on development of updated culturing methods and genomic resources for the painted sea urchin, Lytechinus pictus. Compared to S. purpuratus, L. pictus have relatively large eggs, develop into optically clear embryos, and the smaller adults can become gravid in under a year. Fifty years ago, Hinegardner developed culturing methods for raising L. pictus through metamorphosis. Here, we provide an updated protocol for establishing and maintaining L. pictus in the laboratory, and describe a new genome resource for this urchin. In our hands, L. pictus reach the 4-armed pluteus stage at 4 days; become competent to metamorphosis at 24 days; and are gravid by 6 months. Plutei and juveniles are fed on a diet of algae and diatoms, and adults are fed on kelp. We also make available a L. pictus transcriptome generated from developmental stages (eggs to 2-day-old plutei) to support the annotation of our genome sequencing project, and to enhance the utility of this species for molecular studies and transgenesis.


Asunto(s)
Lytechinus/citología , Lytechinus/genética , Erizos de Mar/citología , Erizos de Mar/genética , Animales , Animales Modificados Genéticamente/genética , Embrión no Mamífero/citología , Genoma/genética , Modelos Animales , Transcriptoma/genética , Secuenciación Completa del Genoma/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...