Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
New Phytol ; 2024 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-38853449

RESUMEN

Modern cultivated rice (Oryza sativa) typically experiences limited growth benefits from arbuscular mycorrhizal (AM) symbiosis. This could be due to the long-term domestication of rice under favorable phosphorus conditions. However, there is limited understanding of whether and how the rice domestication has modified AM properties. This study compared AM properties between a collection of wild (Oryza rufipogon) and domesticated rice genotypes and investigated the mechanisms underlying their differences by analyzing physiological, genomic, transcriptomic, and metabolomic traits critical for AM symbiosis. The results revealed significantly lower mycorrhizal growth responses and colonization intensity in domesticated rice compared to wild rice, and this change of AM properties may be associated with the domestication modifications of plant phosphorus utilization efficiency at physiological and genomic levels. Domestication also resulted in a decrease in the activity of the mycorrhizal phosphorus acquisition pathway, which may be attributed to reduced mycorrhizal compatibility of rice roots by enhancing defense responses like root lignification and reducing carbon supply to AM fungi. In conclusion, rice domestication may have changed its AM properties by modifying P nutrition-related traits and reducing symbiotic compatibility. This study offers new insights for improving AM properties in future rice breeding programs to enhance sustainable agricultural production.

2.
Mycorrhiza ; 32(5-6): 361-371, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36161535

RESUMEN

Arbuscular mycorrhizal (AM) fungi are ubiquitous mutualistic symbionts of most terrestrial plants and many complete their lifecycles underground. Whole genome analysis of AM fungi has long been restricted to species and strains that can be maintained under controlled conditions that facilitate collection of biological samples. There is some evidence suggesting that AM fungi can adapt to culture resulting in phenotypic and possibly also genotypic changes in the fungi. In this study, we used field isolated spores of AM fungi and identified them as Funneliformis geosporum based on morphology and phylogenetic analyses. We separately assembled the genomes of two representative spores using DNA sequences of 19 and 22 individually amplified nuclei. The genomes were compared with previously published data from other members of Glomeraceae including two strains of F. mosseae. No significant differences were observed among the species in terms of gene content, while the single nucleotide polymorphism density was higher in the strains of F. geosporum than in the strains of F. mosseae. In this study, we demonstrate that it is possible to sequence and assemble genomes from AM fungal spores sampled in the field, which opens up the possibility to include uncultured AM fungi in phylogenomic and comparative genomic analysis and to study genomic variation in natural populations of these important plant symbionts.


Asunto(s)
Glomeromycota , Micorrizas , Hongos , Glomeromycota/genética , Micorrizas/genética , Filogenia , Plantas , Esporas Fúngicas
3.
J Fungi (Basel) ; 8(2)2022 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-35205937

RESUMEN

Candida parapsilosis is the second most common cause of candidemia in some geographical areas and in children in particular. Yet, the proportion among children varies, for example, from 10.4% in Denmark to 24.7% in Tehran, Iran. As this species is also known to cause hospital outbreaks, we explored if the relatively high number of C. parapsilosis pediatric cases in Tehran could in part be explained by undiscovered clonal outbreaks. Among 56 C. parapsilosis complex isolates, 50 C. parapsilosis were genotyped by Amplified Fragment Length Polymorphism (AFLP) fingerprinting and microsatellite typing and analyzed for nucleotide polymorphisms by FKS1 and ERG11 sequencing. AFLP fingerprinting grouped Iranian isolates in two main clusters. Microsatellite typing separated the isolates into five clonal lineages, of which four were shared with Danish isolates, and with no correlation to the AFLP patterns. ERG11 and FKS1 sequencing revealed few polymorphisms in ERG11 leading to amino-acid substitutions (D133Y, Q250K, I302T, and R398I), with no influence on azole-susceptibilities. Collectively, this study demonstrated that there were no clonal outbreaks at the Iranian pediatric ward. Although possible transmission of a diverse C. parapsilosis community within the hospital cannot be ruled out, the study also emphasizes the necessity of applying appropriately discriminatory methods for outbreak investigation.

4.
Mycorrhiza ; 31(1): 93-102, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33140218

RESUMEN

Arbuscular mycorrhizal fungi (AMF) colonization in roots of putative non-mycotrophic species has been known for decades, but our knowledge of AMF community structure in non-mycotrophic plants is limited. Here, we compared AMF species composition and diversity in roots of co-occurring mycotrophic and putative non-mycotrophic herbs in two wetlands. A SSU-ITS-LSU fragment in AMF rDNA was amplified, cloned and sequenced, and used to characterize the AMF community in the roots of 16 putative non-mycotrophic and 18 mycotrophic herbs. The results showed that AMF hyphae and vesicles, but not arbuscules, were commonly present in putative non-mycotrophic plants. A total of 971 AMF sequences were obtained, and these were finally assigned to 28 operational taxonomic units (OTUs). At both sites, AMF taxon richness and Hill number based on Shannon's index in the putative non-mycotrophic herbs were similar to those for mycotrophic plants, but AMF community composition between mycotrophic and non-mycotrophic plants was significantly different. Ten AMF OTUs were uniquely detected in the putative non-mycotrophic species, and two were identified as the AMF indicators in non-mycotrophic plants. These results implied that non-mycotrophic plants may harbor a potential source of AMF diversity previously ignored which should be included in our understanding of diversity, distribution pattern, and ecological significance of root-colonizing AMF. As the first direct comparison of AMF diversity and species composition between mycotrophic and putative non-mycotrophic species in wetlands, our study has important implications for the understanding of AMF distribution patterns.


Asunto(s)
Micorrizas , Hongos , Micorrizas/genética , Raíces de Plantas , Plantas , Microbiología del Suelo , Humedales
5.
FEMS Microbiol Ecol ; 95(11)2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31518408

RESUMEN

As groundwater-fed waterworks clean their raw inlet water with sand filters, a variety of pro- and eukaryotic microbial communities develop on these filters. While several studies have targeted the prokaryotic sand filter communities, little is known about the eukaryotic communities, despite the obvious need for knowledge of microorganisms that get in contact with human drinking water. With a new general eukaryotic primer set (18S, V1-V3 region), we performed FLX-454 sequencing of material from 21 waterworks' sand filters varying in age (3-40 years) and geographical location on a 250 km east-west axis in Denmark, and put the data in context of their previously published prokaryotic communities. We find that filters vary highly in trophic complexity depending on age, from simple systems with bacteria and protozoa (3-6 years) to complex, mature systems with nematodes, rotifers and turbellarians as apex predators (40 years). Unlike the bacterial communities, the eukaryotic communities display a clear distance-decay relationship that predominates over environmental variations, indicating that the underlying aquifers feeding the filters harbor distinct eukaryotic communities with limited dispersal in between. Our findings have implications for waterworks' filter management, and offer a window down to the largely unexplored eukaryotic microbiology of groundwater aquifers.


Asunto(s)
Eucariontes/aislamiento & purificación , Filtración/instrumentación , Agua Subterránea/microbiología , Microbiota , Bacterias/aislamiento & purificación , Cartilla de ADN , Dinamarca , Eucariontes/clasificación , Humanos , Arena , Purificación del Agua
6.
Mol Plant Pathol ; 20(8): 1134-1146, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31145530

RESUMEN

An outbreak of the potato late blight pathogen Phytophthora infestans in Denmark was characterized in order to resolve the population structure and determine to what extent sexual reproduction was occurring. A standard set of microsatellite simple sequence repeats (SSRs) and single nucleotide polymorphism (SNP) markers generated using restriction site-associated DNA sequencing (RAD-seq) were employed in parallel. A total of 83 individuals, isolated from seven different potato fields in 2014, were analysed together with five Danish whole-genome sequenced isolates, as well as two Mexican individuals used as an outgroup. From a filtered dataset of 55 288 SNPs, population genomics analyses revealed no sign of recombination, implying clonality. In spite of this, multilocus genotypes were unique to individual potato fields, with little evidence of gene flow between fields. Ploidy analysis performed on the SNPs dataset indicated that the majority of isolates were diploid. These contradictory results with clonality and high genotypic diversity may suggest that rare sexual events likely still contribute to the population. Comparison of the results generated by SSRs vs SNPs data indicated that large marker sets, generated by RAD-seq, may be advised going forward, as it provides a higher level of genetic discrimination than SSRs.


Asunto(s)
Brotes de Enfermedades , Variación Genética , Genómica , Phytophthora infestans/genética , Enfermedades de las Plantas/microbiología , Solanum tuberosum/microbiología , Células Clonales , Dinamarca , Genotipo , Geografía , Repeticiones de Microsatélite/genética , Ploidias , Polimorfismo de Nucleótido Simple/genética , Recombinación Genética/genética
7.
New Phytol ; 216(1): 227-238, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28722181

RESUMEN

The availability of global microbial diversity data, collected using standardized metabarcoding techniques, makes microorganisms promising models for investigating the role of regional and local factors in driving biodiversity. Here we modelled the global diversity of symbiotic arbuscular mycorrhizal (AM) fungi using currently available data on AM fungal molecular diversity (small subunit (SSU) ribosomal RNA (rRNA) gene sequences) in field samples. To differentiate between regional and local effects, we estimated species pools (sets of potentially suitable taxa) for each site, which are expected to reflect regional processes. We then calculated community completeness, an index showing the fraction of the species pool present, which is expected to reflect local processes. We found significant spatial variation, globally in species pool size, as well as in local and dark diversity (absent members of the species pool). Species pool size was larger close to areas containing tropical grasslands during the last glacial maximum, which are possible centres of diversification. Community completeness was greater in regions of high wilderness (remoteness from human disturbance). Local diversity was correlated with wilderness and current connectivity to mountain grasslands. Applying the species pool concept to symbiotic fungi facilitated a better understanding of how biodiversity can be jointly shaped by large-scale historical processes and recent human disturbance.


Asunto(s)
Biodiversidad , Actividades Humanas , Micorrizas/fisiología , Ecosistema , Geografía , Humanos
8.
Mycorrhiza ; 26(6): 575-85, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27072359

RESUMEN

In 1998, a toxic mine spill polluted a 55-km(2) area in a basin southward to Doñana National Park (Spain). Subsequent attempts to restore those trace element-contaminated soils have involved physical, chemical, or biological methodologies. In this study, the restoration approach included application of different types and doses of organic amendments: biosolid compost (BC) and leonardite (LEO). Twelve years after the last addition, molecular analyses of arbuscular mycorrhizal (AM) fungal communities associated with target plants (Lamarckia aurea and Chrysanthemum coronarium) as well as analyses of trace element concentrations both in soil and in plants were performed. The results showed an improved soil quality reflected by an increase in soil pH and a decrease in trace element availability as a result of the amendments and dosages. Additionally, the phylogenetic diversity of the AM fungal community increased, reaching the maximum diversity at the highest dose of BC. Trace element concentration was considered the predominant soil factor determining the AM fungal community composition. Thereby, the studied AM fungal community reflects a community adapted to different levels of contamination as a result of the amendments. The study highlights the long-term effect of the amendments in stabilizing the soil system.


Asunto(s)
Variación Genética , Micorrizas/genética , Filogenia , Contaminantes del Suelo/toxicidad , Suelo/química , Oligoelementos/toxicidad , Biodegradación Ambiental , Chrysanthemum/química , Chrysanthemum/metabolismo , Concentración de Iones de Hidrógeno , Minerales/química , Minería , Micorrizas/clasificación , Micorrizas/efectos de los fármacos , Poaceae/química , Poaceae/metabolismo , Contaminantes del Suelo/química , Oligoelementos/química
9.
Appl Environ Microbiol ; 81(8): 2958-65, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25681190

RESUMEN

Application of a mycorrhizal inoculum could be one way to increase the yield of rice plants and reduce the application of fertilizer. We therefore studied arbuscular mycorrhizal fungi (AMF) in the roots of wetland rice (Oryza sativa L.) collected at the seedling, tillering, heading, and ripening stages in four paddy wetlands that had been under a high-input and intensively irrigated rice cultivation system for more than 20 years. It was found that AMF colonization was mainly established in the heading and ripening stages. The AMF community structure was characterized in rhizosphere soils and roots from two of the studied paddy wetlands. A fragment covering the partial small subunit (SSU), the whole internal transcribed spacer (ITS), and the partial large subunit (LSU) rRNA operon regions of AMF was amplified, cloned, and sequenced from roots and soils. A total of 639 AMF sequences were obtained, and these were finally assigned to 16 phylotypes based on a phylogenetic analysis, including 12 phylotypes from Glomeraceae, one phylotype from Claroideoglomeraceae, two phylotypes from Paraglomeraceae, and one unidentified phylotype. The AMF phylotype compositions in the soils were similar between the two surveyed sites, but there was a clear discrepancy between the communities obtained from root and soil. The relatively high number of AMF phylotypes at the surveyed sites suggests that the conditions are suitable for some species of AMF and that they may have an important function in conventional rice cultivation systems. The species richness of root-colonizing AMF increased with the growth of rice, and future studies should consider the developmental stages of this crop in the exploration of AMF function in paddy wetlands.


Asunto(s)
Agricultura/métodos , Micorrizas/genética , Micorrizas/metabolismo , Oryza/microbiología , Raíces de Plantas/microbiología , Microbiología del Suelo , ADN de Hongos/genética , ADN de Hongos/metabolismo , ADN Intergénico/genética , ADN Intergénico/metabolismo , Datos de Secuencia Molecular , Micorrizas/clasificación , Oryza/crecimiento & desarrollo , Filogenia , Análisis de Secuencia de ADN , Humedales
10.
Environ Sci Technol ; 49(2): 839-46, 2015 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-25522137

RESUMEN

Rapid sand filtration is essential at most waterworks that treat anaerobic groundwater. Often the filtration depends on microbiological processes, but the microbial communities of the filters are largely unknown. We determined the prokaryotic community structures of 11 waterworks receiving groundwater from different geological settings by 16S rRNA gene-based 454 pyrosequencing and explored their relationships to filtration technology and raw water chemistry. Most of the variation in microbial diversity observed between different waterworks sand filters could be explained by the geochemistry of the inlet water. In addition, our findings suggested four features of particular interest: (1) Nitrospira dominated over Nitrobacter at all waterworks, suggesting that Nitrospira is a key nitrifying bacterium in groundwater-treating sand filters. (2) Hyphomicrobiaceae species were abundant at all waterworks, where they may be involved in manganese oxidation. (3) Six of 11 waterworks had significant concentrations of methane in their raw water and very high abundance of the methanotrophic Methylococcaceae. (4) The iron-oxidizing bacteria Gallionella was present at all waterworks suggesting that biological iron oxidation is occurring in addition to abiotic iron oxidation. Elucidation of key members of the microbial community in groundwater-treating sand filters has practical potential, for example, when methods are needed to improve filter function.


Asunto(s)
Agua Subterránea/análisis , Agua Subterránea/microbiología , Contaminantes del Agua/análisis , Purificación del Agua/métodos , Amoníaco/química , Bacterias/genética , Carbono/química , Filtración , Hierro/química , Manganeso/química , Metano/química , Nitrobacter/genética , ARN Ribosómico 16S/genética , Dióxido de Silicio/química , Microbiología del Agua
12.
Ecol Evol ; 4(6): 794-805, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24683461

RESUMEN

Controlled experiments show that arbuscular mycorrhizal fungi (AMF) can increase competitiveness of exotic plants, potentially increasing invasion success. We surveyed AMF abundance and community composition in Centaurea stoebe and Potentilla recta invasions in the western USA to assess whether patterns were consistent with mycorrhizal-mediated invasions. We asked whether (1) AMF abundance and community composition differ between native and exotic forbs, (2) associations between native plants and AMF shift with invading exotic plants, and (3) AMF abundance and/or community composition differ in areas where exotic plants are highly invasive and in areas where they are not. We collected soil and roots from invaded and native forb communities along invasion gradients and in regions with different invasion densities. We used AMF root colonization as a measure of AMF abundance and characterized AMF communities in roots using 454-sequencing of the LSU-rDNA region. All plants were highly colonized (>60%), but exotic forbs tended to be more colonized than natives (P < 0.001). We identified 30 AMF operational taxonomic units (OTUs) across sites, and community composition was best predicted by abiotic factors (soil texture, pH). Two OTUs in the genera Glomus and Rhizophagus dominated in most communities, and their dominance increased with invasion density (r = 0.57, P = 0.010), while overall OTU richness decreased with invasion density (r = -0.61, P = 0.006). Samples along P. recta invasion gradients revealed small and reciprocal shifts in AMF communities with >45% fungal OTUs shared between neighboring native and P. recta plants. Overall, we observed significant, but modest, differences in AMF colonization and communities between co-occurring exotic and native forbs and among exotic forbs across regions that differ in invasion pressure. While experimental manipulations are required to assess functional consequences, the observed patterns are not consistent with those expected from strong mycorrhizal-mediated invasions.

14.
Sci Total Environ ; 466-467: 699-705, 2014 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-23973535

RESUMEN

Bioremediation of pesticide-polluted soil may be more efficient using mixed fungal-bacterial cultures rather than the individual strains alone. This may be due to cooperative catabolism, where the first organism transforms the pollutant to products which are then used by the second organism. In addition, fungal hyphae may function as transport vectors for bacteria, thereby facilitating a more effective spreading of degrader organisms in the soil. A more rapid mineralization of the phenylurea herbicide diuron was found in sand with added microbial consortia consisting of both degrading bacteria and fungi. Facilitated transport of bacteria by fungal hyphae was demonstrated using a system where herbicide-spiked sand was separated from the consortium by a layer of sterile glass beads. Several fungal-bacterial consortia were investigated by combining different diuron-degrading bacteria (Sphingomonas sp. SRS2, Variovorax sp. SRS16, and Arthrobacter globiformis D47) and fungi (Mortierella sp. LEJ702 and LEJ703). The fastest mineralization of (14)C-labeled diuron was seen in the consortium consisting of Mortierella LEJ702, Variovorax SRS16, and A. globiformis D47, as measured by evolved (14)CO2. In addition, the production of diuron metabolites by this consortium was minimal. Analyses of 16S rDNA suggested that bacteria were transported more efficiently by LEJ702 than by LEJ703. Finally, it was determined that the fungal growth differed for LEJ702 and LEJ703 in the three-member consortia. This study demonstrates new possibilities for applying efficient fungal-bacterial consortia for bioremediation of polluted soil.


Asunto(s)
Bacterias/metabolismo , Diurona/metabolismo , Contaminantes Ambientales/metabolismo , Restauración y Remediación Ambiental/métodos , Herbicidas/metabolismo , Consorcios Microbianos , Mortierella/metabolismo , Arthrobacter/metabolismo , Biodegradación Ambiental , Comamonadaceae/metabolismo , Hifa/fisiología , Mortierella/genética , Sphingomonas/metabolismo
15.
Fungal Biol ; 117(11-12): 764-75, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24295915

RESUMEN

Phylogenetic analyses of Mycena sect. Calodontes using ITS previously suggested ten cryptic monophyletic ITS lineages within the Mycena pura morphospecies. Here, we compare ITS data (645 bp incl. gaps) from 46 different fruit bodies that represent the previously described ITS diversity with partial tEF-1-α (423 bp) and RNA polymerase II (RPB1) (492 bp) sequence data to test the genealogical concordance. While neither of the markers were in complete topological agreement, the branches differing between the tEF and RPB1 trees had a low bootstrap (<50) support, and the partition homogeneity incongruence length difference (ILD) tests were not significant. ILD tests revealed significant discordances between ITS and the tEF and RPB1 markers in several lineages. And our analyses suggested recombination between ITS1 and ITS2, most pronounced in one phylospecies that was identical in tEF and RPB1. Based on the agreement between tEF and RPB1, we defined 11 mutually concordant terminal clades as phylospecies inside the M. pura morphospecies; most of them cryptic. While neither of the markers showed an unequivocal barcoding gap between inter- and intraspecific diversity, the overlap was most pronounced for ITS (intraspecific diversity 0-3.5 %, interspecific diversity 0.4 %-8.8 %). A clustering analysis on tEF separated at a 1.5 % level returned all phylogenetic species as Operational Taxonomic Units (OTUs), while ITS at both a 1.5 % level and at a 3 % threshold level not only underestimated diversity as found by the tEF and RPB1, but also identified an OTU which was not a phylogenetic species. Thus, our investigation does not support the universal suitability of ITS for species recognition in particular, and emphasises the general limitation of single gene analyses combined with single percentage separation values.


Asunto(s)
Agaricales/clasificación , Agaricales/genética , ADN Espaciador Ribosómico/genética , Factor 1 de Elongación Peptídica/genética , Filogenia , ARN Polimerasa II/genética , Análisis por Conglomerados , ADN de Hongos/química , ADN de Hongos/genética , ADN Espaciador Ribosómico/química , Variación Genética , Datos de Secuencia Molecular , Análisis de Secuencia de ADN
16.
Environ Pollut ; 181: 122-7, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23850628

RESUMEN

Introduction of specific degrading microorganisms into polluted soil or aquifers is a promising remediation technology provided that the organisms survive and spread in the environment. We suggest that consortia, rather than single strains, may be better suited to overcome these challenges. Here we introduced a fungal-bacterial consortium consisting of Mortierella sp. LEJ702 and the 2,6-dichlorobenzamide (BAM)-degrading Aminobacter sp. MSH1 into small sand columns. A more rapid mineralisation of BAM was obtained by the consortium compared to MSH1 alone especially at lower moisture contents. Results from quantitative real-time polymerase chain reaction (qPCR) demonstrated better spreading of Aminobacter when Mortierella was present suggesting that fungal hyphae may stimulate bacterial dispersal. Extraction and analysis of BAM indicated that translocation of the compound was also affected by the fungal hyphae in the sand. This suggests that fungal-bacterial consortia are promising for successful bioremediation of pesticide contamination.


Asunto(s)
Bacterias/metabolismo , Benzamidas/metabolismo , Contaminantes Ambientales/metabolismo , Hifa , Plaguicidas/metabolismo , Bacterias/crecimiento & desarrollo , Benzamidas/análisis , Biodegradación Ambiental , Contaminantes Ambientales/análisis , Contaminación Ambiental , Agua Subterránea , Plaguicidas/análisis , Microbiología del Suelo , Microbiología del Agua
17.
New Phytol ; 200(1): 229-240, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23738787

RESUMEN

Common mycorrhizal networks (CMNs) influence competition between plants, but reports regarding their precise effect are conflicting. We studied CMN effects on phosphorus (P) uptake and growth of seedlings as influenced by various disruptions of network components. Tomato (Solanum lycopersicon) seedlings grew into established networks of Rhizophagus irregularis and cucumber (Cucumis sativus) in two experiments. One experiment studied seedling uptake of (32)P in the network in response to cutting of cucumber shoots; the other analysed seedling uptake of P and nitrogen (N) in the presence of intact or severed arbuscular mycorrhizal fungus networks and at two soil P concentrations. Pre-established and intact networks suppressed growth of tomato seedlings. Cutting of cucumber shoots mitigated P deficiency symptoms of seedlings, which obtained access to P in the extraradical mycelium and thereby showed improved growth. Solitary seedlings growing in a network patch that had been severed from the CMN also grew much better than seedlings of the corresponding CMN. Interspecific and size-asymmetric competition between plants may be amplified rather than relaxed by CMNs that transfer P to large plants providing most carbon and render small plants P deficient. It is likely that grazing or senescence of the large plants will alleviate the network-induced suppression of seedling growth.


Asunto(s)
Cucumis sativus/fisiología , Micorrizas/fisiología , Fósforo/metabolismo , Plantones/crecimiento & desarrollo , Solanum lycopersicum/fisiología , Carbono/metabolismo , Cucumis sativus/crecimiento & desarrollo , Cucumis sativus/metabolismo , Cucumis sativus/microbiología , Glomeromycota , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/metabolismo , Solanum lycopersicum/microbiología , Micorrizas/metabolismo , Plantones/metabolismo , Plantones/microbiología
18.
ISME J ; 7(7): 1424-33, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23486251

RESUMEN

Invasions by non-native plants can alter ecosystem functions and reduce native plant diversity, but relatively little is known about their effect on belowground microbial communities. We show that invasions by knapweed (Centaurea stoebe) and leafy spurge (Euphorbia esula, hereafter spurge)--but not cheatgrass (Bromus tectorum)--support a higher abundance and diversity of symbiotic arbuscular mycorrhizal fungi (AMF) than multi-species native plant communities. The higher AMF richness associated with knapweed and spurge is unlikely due to a co-invasion by AMF, because a separate sampling showed that individual native forbs hosted a similar AMF abundance and richness as exotic forbs. Native grasses associated with fewer AMF taxa, which could explain the reduced AMF richness in native, grass-dominated communities. The three invasive plant species harbored distinct AMF communities, and analyses of co-occurring native and invasive plants indicate that differences were partly driven by the invasive plants and were not the result of pre-invasion conditions. Our results suggest that invasions by mycotrophic plants that replace poorer hosts can increase AMF abundance and richness. The high AMF richness in monodominant plant invasions also indicates that the proposed positive relationship between above and belowground diversity is not always strong. Finally, the disparate responses among exotic plants and consistent results between grasses and forbs suggest that AMF respond more to plant functional group than plant provenance.


Asunto(s)
Biodiversidad , Hongos/fisiología , Especies Introducidas , Plantas/microbiología , Microbiología del Suelo , Hongos/genética , Genes de ARNr/genética , Micorrizas/clasificación , Micorrizas/genética , Micorrizas/fisiología , Poaceae/microbiología
19.
New Phytol ; 199(1): 288-299, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23534863

RESUMEN

Novel high-throughput sequencing methods outperform earlier approaches in terms of resolution and magnitude. They enable identification and relative quantification of community members and offer new insights into fungal community ecology. These methods are currently taking over as the primary tool to assess fungal communities of plant-associated endophytes, pathogens, and mycorrhizal symbionts, as well as free-living saprotrophs. Taking advantage of the collective experience of six research groups, we here review the different stages involved in fungal community analysis, from field sampling via laboratory procedures to bioinformatics and data interpretation. We discuss potential pitfalls, alternatives, and solutions. Highlighted topics are challenges involved in: obtaining representative DNA/RNA samples and replicates that encompass the targeted variation in community composition, selection of marker regions and primers, options for amplification and multiplexing, handling of sequencing errors, and taxonomic identification. Without awareness of methodological biases, limitations of markers, and bioinformatics challenges, large-scale sequencing projects risk yielding artificial results and misleading conclusions.


Asunto(s)
Biología Computacional/métodos , Hongos/genética , Marcadores Genéticos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Biota , Cartilla de ADN , ADN de Hongos/análisis , ADN Intergénico , Hongos/clasificación , Micorrizas/genética , Reacción en Cadena de la Polimerasa/métodos , Microbiología del Suelo
20.
Biodegradation ; 24(6): 765-74, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23361127

RESUMEN

Microbial pesticide degradation studies have until now mainly focused on bacteria, although fungi have also been shown to degrade pesticides. In this study we clarify the background for the ability of the common soil fungus Mortierella to degrade the phenylurea herbicide diuron. Diuron degradation potentials of five Mortierella strains were compared, and the role of carbon and nitrogen for the degradation process was investigated. Results showed that the ability to degrade diuron varied greatly among the Mortierella strains tested, and the strains able to degrade diuron were closely related. Degradation of diuron was fastest in carbon and nitrogen rich media while suboptimal nutrient levels restricted degradation, making it unlikely that Mortierella utilize diuron as carbon or nitrogen sources. Degradation kinetics showed that diuron degradation was followed by formation of the metabolites 1-(3,4-dichlorophenyl)-3-methylurea, 1-(3,4-dichlorophenyl)urea and an hitherto unknown metabolite suggested to be 1-(3,4-dichlorophenyl)-3-methylideneurea.


Asunto(s)
Diurona/metabolismo , Herbicidas/metabolismo , Mortierella/clasificación , Mortierella/metabolismo , Microbiología del Suelo , Biodegradación Ambiental/efectos de los fármacos , Biomasa , Carbono/farmacología , Cromatografía Líquida de Alta Presión , Diurona/química , Herbicidas/química , Cinética , Funciones de Verosimilitud , Datos de Secuencia Molecular , Mortierella/efectos de los fármacos , Mortierella/aislamiento & purificación , Nitrógeno/farmacología , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...