Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-33203651

RESUMEN

OBJECTIVE: To assess the impact of laquinimod treatment on monocytes and to investigate the underlying immunomodulatory mechanisms in MS. METHODS: In this cross-sectional study, we performed in vivo and in vitro analyses of cluster of differentiation (CD14+) monocytes isolated from healthy donors (n = 15), untreated (n = 13), and laquinimod-treated patients with MS (n = 14). Their frequency and the expression of surface activation markers were assessed by flow cytometry and the viability by calcein staining. Cytokine concentrations in the supernatants of lipopolysaccharide (LPS)-stimulated monocytes were determined by flow cytometry. The messenger ribonucleic acid (mRNA) expression level of genes involved in cytokine expression was measured by quantitative PCR. The LPS-mediated nuclear factor kappa-light-chain-enhancer of activated B-cell (NF-κB) activation was determined by the quantification of the phosphorylation level of the p65 subunit. Laquinimod-treated monocytes were cocultured with CD4+ T cells, and the resulting cytokine production was analyzed by flow cytometry after intracellular cytokine staining. The interleukin (IL)-17A concentration of the supernatant was assessed by ELISA. RESULTS: Laquinimod did not alter the frequency or viability of circulating monocytes, but led to an upregulation of CD86 expression. LPS-stimulated monocytes of laquinimod-treated patients with MS secreted less IL-1ß following a downregulation of IL-1ß gene expression. Phosphorylation levels of the NF-κB p65 subunit were reduced after laquinimod treatment, indicating a laquinimod-associated inhibition of the NF-κB pathway. T cells primed with laquinimod-treated monocytes differentiated significantly less into IL-17A-producing T helper (Th)-17 cells. CONCLUSIONS: Our findings suggest that inhibited NF-κB signaling and downregulation of IL-1ß expression in monocytes contributes to the immunomodulatory effects of laquinimod and that the impairment of Th17 polarization might mediate its disease-modifying activity in MS.


Asunto(s)
Interleucina-1beta/inmunología , Monocitos/efectos de los fármacos , Esclerosis Múltiple Recurrente-Remitente/tratamiento farmacológico , Quinolonas/uso terapéutico , Células Th17/inmunología , Adulto , Estudios Transversales , Femenino , Humanos , Interleucina-1beta/metabolismo , Activación de Linfocitos/efectos de los fármacos , Masculino , Persona de Mediana Edad , Monocitos/inmunología , Esclerosis Múltiple Recurrente-Remitente/inmunología , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...