Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Gen Comp Endocrinol ; 348: 114434, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38142842

RESUMEN

Atlantic salmon (Salmo salar) broodstock recruits are normally fed a specialized diet with a higher content of essential nutrients for a limited time period prior to fasting and transfer to freshwater. Typically, this period lasts for about six months, but may vary among producers. Reduced use of marine ingredients in commercial salmon diets during the last decades has affected the content of essential nutrients, such as n-3 long chained polyunsaturated fatty acids (LC-PUFA), minerals and vitamins. Furthermore, to minimize the risk of losses and implement new breeding achievements faster, breeding companies have shortened the production cycle of broodstock from 4 to 3 years, which may affect the number of fish that are large enough to mature. In the present study, we have extended the broodstock feeding period from 6 to 15 months prior to the freshwater transfer giving a higher content of n-3 LC-PUFA (higher inclusion of marine oils) from February to December (Phase 1), and thereafter a diet with a higher energy content to ensure growth towards the spring and maturation (Phase 2). Four sea cages with approximately 80.000 salmon postsmolt, two sea cages with males and two with females, were given a control diet and an experimental diet. Samples were taken in Phase 1 at start (1.7 kg), mid (3.4 kg) and end Phase 1/start of Phase 2 (8.3 kg), and end of Phase 2 (13.4 kg). The fish were thereafter fasted, and selected fish transferred to landbased freshwater tanks where light and temperature were used to manipulate the spawning time of the fish in two groups (early or late). Due to disease in the facility, measures of egg quality and hatching were only obtained from the early group. During the trial and spawning period, biometrical measurements were recorded, and samples of liver, gonad, fillet and red blood cells (RBC) were collected for fatty acid composition and blood plasma for analysis of lipid and health-related parameters. Samples were also collected for gonadal transcriptomic analysis by microarray and qPCR (end Phase 2) and plasma steroids (end Phase 2, mid maturation and spawning). Males fed the test diet had a larger body size compared to the control group at the end of Phase 2, while no differences were observed between dietary groups for the females. Total mortality in the trial was lower in the test group compared to the control, losses were caused mainly by sea lice treatments, loser fish or cardiomyopathy syndrome (CMS). The dietary LC-PUFA levels in the test diet were reflected in the tissues particularly during Phase 1, but only different in the fillet samples and eggs at the end of Phase 2 and at spawning. Plasma sex steroids content increased at mid maturation and showed lower levels of androgens and estrogens in females fed the test diet compared to the control. At the end of Phase 2, transcriptional analysis showed upregulation of steroidogenic enzymes, although not reflected in changes in plasma steroids in Phase 2, indicating changes to come during maturation. The differences in LC-PUFA content in tissues and plasma steroids did not appear to affect fecundity, sperm quality, egg survival or hatching rate, but the test group had larger eggs compared to the control in the early spawner-group. Prolonged feeding of n-3 LC-PUFA to pre-puberty Atlantic salmon broodstock appears to be important for higher survival in challenging sea cage environments and has an effect on sex steroid production that, together with high energy diet during early maturation, cause the test group to produce larger eggs.


Asunto(s)
Ácidos Grasos Omega-3 , Salmo salar , Animales , Femenino , Masculino , Maduración Sexual , Semen , Ácidos Grasos , Dieta/veterinaria , Esteroides , Alimentación Animal/análisis
2.
Br J Nutr ; 129(1): 10-28, 2023 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-35236527

RESUMEN

The present study evaluated the effects of increasing the dietary levels of EPA and DHA in Atlantic salmon (Salmo salar) reared in sea cages, in terms of growth performance, welfare, robustness and overall quality. Fish with an average starting weight of 275 g were fed one of four different diets containing 10, 13, 16 and 35 g/kg of EPA and DHA (designated as 1·0, 1·3, 1·6 and 3·5 % EPA and DHA) until they reached approximately 5 kg. The 3·5 % EPA and DHA diet showed a significantly beneficial effect on growth performance and fillet quality compared with all other diets, particularly the 1 % EPA and DHA diet. Fish fed the diet containing 3·5 % EPA and DHA showed 400-600 g higher final weights, improved internal organ health scores and external welfare indicators, better fillet quality in terms of higher visual colour score and lower occurrence of dark spots and higher EPA and DHA content in tissues at the end of the feeding trial. Moreover, fish fed the 3·5 % EPA and DHA diet showed lower mortality during a naturally occurring cardiomyopathy syndrome outbreak, although this did not reach statistical significance. Altogether, our findings emphasise the importance of dietary EPA and DHA to maintain good growth, robustness, welfare and fillet quality of Atlantic salmon reared in sea cages.


Asunto(s)
Ácidos Grasos Omega-3 , Salmo salar , Animales , Ácido Eicosapentaenoico/farmacología , Ácidos Docosahexaenoicos/farmacología , Dieta/veterinaria , Alimentación Animal/análisis
3.
Metabolites ; 12(2)2022 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-35208233

RESUMEN

The present study aimed at elucidating the effects of graded levels of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on the hepatic metabolic health of Atlantic salmon reared in sea cages. Diets containing 10, 13, 16 and 35 g/kg EPA + DHA (designated diets 1.0, 1.3, 1.6 and 3.5, respectively) were fed in triplicate through a full production cycle from an average starting weight of 275 g to slaughter size (~5 kg). Feeding low dietary EPA + DHA altered the hepatic energy metabolism, evidenced by reductions in tricarboxylic acid cycle intermediates originating from ß-oxidation, which was compensated by elevated activity in alternative energy pathways (pentose phosphate pathway, branched chain amino acid catabolism and creatine metabolism). Increases in various acylcarnitines in the liver supported this and indicates issues with lipid metabolism (mitochondrial ß-oxidation). Problems using lipids for energy in the lower EPA + DHA groups line up well with observed increases in liver lipids in these fish. It also aligns with the growth data, where fish fed the highest EPA + DHA grew better than the other groups. The study showed that diets 1.0 and 1.3 were insufficient for maintaining good liver metabolic health. However, diet 3.5 was significantly better than diet 1.6, indicating that diet 1.6 might also be suboptimal.

4.
Br J Nutr ; 128(12): 2291-2307, 2022 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-35156914

RESUMEN

Atlantic salmon were fed diets containing graded levels of EPA + DHA (1·0, 1·3, 1·6 and 3·5 % in the diet) and one diet with 1·3 % of EPA + DHA with reduced total fat content. Fish were reared in sea cages from about 275 g until harvest size (about 5 kg) and were subjected to delousing procedure (about 2·5 kg), with sampling pre-, 1 h and 24 h post-stress. Delousing stress affected plasma cortisol and hepatic mRNA expression of genes involved in oxidative stress and immune response, but with no dietary effects. Increasing EPA + DHA levels in the diet increased the trace mineral levels in plasma and liver during mechanical delousing stress period and whole body at harvest size. The liver Se, Zn, Fe, Cu, and Mn and plasma Se levels were increased in fish fed a diet high in EPA + DHA (3·5 %) upon delousing stress. Furthermore, increased dietary EPA + DHA caused a significant increase in mRNA expression of hepcidin antimicrobial peptide (HAMP), which is concurrent with downregulated transferrin receptor (TFR) expression levels. High dietary EPA + DHA also significantly increased the whole-body Zn, Se, and Mn levels at harvest size fish. Additionally, the plasma and whole-body Zn status increased, respectively, during stress and at harvest size in fish fed reduced-fat diet with less EPA + DHA. As the dietary upper limits of Zn and Se are legally added to the feeds and play important roles in maintaining fish health, knowledge on how the dietary fatty acid composition and lipid level affect body stores of these minerals is crucial for the aquaculture industry.


Asunto(s)
Salmo salar , Animales , Salmo salar/metabolismo , Dieta , Ácidos Grasos/metabolismo , Minerales , ARN Mensajero
6.
PeerJ ; 9: e12028, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34540364

RESUMEN

The aim of the study was to investigate the influence of dietary level and ratio of n-6/n-3 fatty acids (FA) on growth, disease progression and expression of immune and inflammatory markers in Atlantic salmon (Salmo salar) following challenge with Paramoeba perurans. Fish (80 g) were fed four different diets with different ratios of n-6/n-3 FA; at 1.3, 2.4 and 6.0 and one diet with ratio of 1.3 combined with a higher level of n-3 FA and n-6 FA. The diet with the n-6/n-3 FA ratio of 6.0 was included to ensure potential n-6 FA effects were revealed, while the three other diets were more commercially relevant n-6/n-3 FA ratios and levels. After a pre-feeding period of 3 months, fish from each diet regime were challenged with a standardized laboratory challenge using a clonal culture of P. perurans at the concentration of 1,000 cells L-1. The subsequent development of the disease was monitored (by gross gill score), and sampling conducted before challenge and at weekly sampling points for 5 weeks post-challenge. Challenge with P. perurans did not have a significant impact on the growth of the fish during the challenge period, but fish given the feed with the highest n-6/n-3 FA ratio had reduced growth compared to the other groups. Total gill score for all surfaces showed a significant increase with time, reaching a maximum at 21 days post-challenge and declined thereafter, irrespective of diet groups. Challenge with P. perurans influenced the mRNA expression of examined genes involved in immune and inflammatory response (TNF-α, iNOS, IL4-13b, GATA-3, IL-1ß, p53, COX2 and PGE2-EP4), but diet did not influence the gene expression. In conclusion, an increase in dietary n-6/n-3 FA ratio influenced the growth of Atlantic salmon challenged with P. perurans; however, it did not alter the mRNA expression of immune genes or progression of the disease.

7.
Animals (Basel) ; 11(2)2021 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-33671379

RESUMEN

Genetic selection in gilthead seabream (GSB), Sparus aurata, has been undertaken to improve the growth, feed efficiency, fillet quality, skeletal deformities and disease resistance, but no study is available to delineate the effect of genetic selection for growth trait on GSB reproductive performance under mass spawning condition. In this study, high growth (HG) or low growth (LG) GSB broodstock were selected to evaluate the sex steroid hormones, sperm, egg quality and reproductive performance under different feeding regime of commercial diet or experimental broodstock diet containing either fish oil (FO) or vegetable oil (VO) based diet. Under commercial diet feeding phase, broodstock selected for either high growth or low growth did not show any significant changes in the egg production per kg female whereas egg viability percentage was positively (p = 0.014) improved by the high growth trait broodstock group. The experimental diet feeding results revealed that both growth trait and dietary fatty acid composition influenced the reproductive performance of GSB broodstock. In the experimental diet feeding phase, we observed high growth trait GSB males produced a higher number of sperm cells (p < 0.001) and also showed a higher sperm motility (p = 0.048) percentage. The viable egg and larval production per spawn per kg female were significantly improved by the broodstock selected for high growth trait and fed with fish oil-based diet. This present study results signifies that gilthead seabream broodstock selected on growth trait could have positive role in improvement of sperm and egg quality to produce viable progeny.

8.
Br J Nutr ; 125(1): 10-25, 2021 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-32660682

RESUMEN

There is an increased use of vegetable oils containing n-6 fatty acids (FA) in aquafeeds, and several trials indicate that there might be an increased requirement of EPA and DHA for Atlantic salmon when they are fed higher dietary n-6 FA. With a limited supply of EPA and DHA for production of aquafeeds, it is important to know how to efficiently use these FA to maintain growth and health of the fish. In the present trial, three diets containing equal amounts of n-3 FA (about 7·7 % of total FA) and different n-6:n-3 FA ratios (about 1, 2 and 6), as well as one diet with n-6:n-3 FA ratio at about 1 but twice as much n-3 FA, were fed to Atlantic salmon. Despite constant dietary n-3, increasing dietary n-6 led to significantly reduced n-3 in tissue polar lipids. Interestingly, EPA was significantly reduced while DHA was not. Maintaining a stable n-3 content in the polar lipids when increasing dietary n-6 FA was only obtained by simultaneously increasing the dietary n-3 content and with this maintaining the same n-6:n-3 FA ratio. Polar lipid n-6 FA in tissues thus primarily reflected the dietary n-6:n-3 FA ratio and not the absolute dietary n-6 FA content. Neutral lipids, on the other hand, reflected the dietary absolute levels of both n-3 and n-6 FA. This study indicates that a better use of dietary EPA is achieved by keeping the dietary n-6:n-3 FA ratio low.


Asunto(s)
Alimentación Animal/análisis , Ácido Eicosapentaenoico/análisis , Ácidos Grasos Omega-3/administración & dosificación , Ácidos Grasos Omega-6/administración & dosificación , Lípidos/análisis , Animales , Ácidos Docosahexaenoicos/análisis , Explotaciones Pesqueras , Necesidades Nutricionales , Aceites de Plantas/química , Salmo salar
9.
Eur J Nutr ; 60(4): 2231-2248, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33108521

RESUMEN

PURPOSE: To explore whether high intake of cod or salmon would affect gut microbiota profile, faecal output and serum concentrations of lipids and bile acids. METHODS: Seventy-six adults with overweight/obesity with no reported gastrointestinal disease were randomly assigned to consume 750 g/week of either cod or salmon, or to avoid fish intake (Control group) for 8 weeks. Fifteen participants from each group were randomly selected for 72 h faeces collection at baseline and end point for gut microbiota profile analyses using 54 bacterial DNA probes. Food intake was registered, and fasting serum and morning urine were collected at baseline and end point. RESULTS: Sixty-five participants were included in serum and urine analyses, and gut microbiota profile was analysed for 33 participants. Principal component analysis of gut microbiota showed an almost complete separation of the Salmon group from the Control group, with lower counts for bacteria in the Bacteroidetes phylum and the Clostridiales order of the Firmicutes phyla, and higher counts for bacteria in the Selenomonadales order of the Firmicutes phylum. The Cod group showed greater similarity to the Salmon group than to the Control group. Intake of fibres, proteins, fats and carbohydrates, faecal daily mass and output of fat, cholesterol and total bile acids, and serum concentrations of cholesterol, triacylglycerols, non-esterified fatty acids and total bile acids were not altered in the experimental groups. CONCLUSION: A high intake of cod or salmon fillet modulated gut microbiota but did not affect faecal output or serum concentrations of lipids and total bile acids. CLINICAL TRIAL REGISTRATION: This trial was registered at clinicaltrials.gov as NCT02350595.


Asunto(s)
Microbioma Gastrointestinal , Adulto , Animales , Ácidos y Sales Biliares , Heces , Humanos , Sobrepeso , Salmón , Triglicéridos
10.
Artículo en Inglés | MEDLINE | ID: mdl-33079632

RESUMEN

The substitution of fish oil and fishmeal with plant-based ingredients in commercial aquafeeds for Atlantic salmon, may introduce novel contaminants that have not previously been associated with farmed fish. The organophosphate pesticide pirimiphos-methyl (PM) is one of the novel contaminants that is most prevalent in commercial salmon feed. In this study, the feed-to-fillet transfer of dietary PM and its main metabolites was investigated in Atlantic salmon fillet. Based on the experimental determined PM and metabolite uptake, metabolisation, and elimination kinetics, a physiologically based toxicokinetic (PBTK) compartmental model was developed. Fish fed PM had a relatively low (~4%) PM retention and two main metabolites (2-DAMP and Desethyl-PM) were identified in liver, muscle, kidney and bile. The absence of more metabolised forms of 2-DAMP and Desethyl-PM in Atlantic salmon indicates different metabolism in cold-water fish compared to previous studies on ruminants. The model was used to simulate the long term (>1.5 years) feed-to-fillet transfer of PM + metabolite in Atlantic salmon under realistic farming conditions including seasonal fluctuations in feed intake, growth, and fat deposition in muscle tissue. The model predictions show that with the constant presence of the highest observed PM concentration in commercial salmon feed, fillet PM+ metabolite levels were approximately 5 nmol kg-1, with highest levels for the metabolite 2-DAMP. No EU maximum residue levels (MRL) for PM and its main metabolites exist in seafood to date, but the predicted levels were lower than the MRL for PM in swine of 32.7 nmol kg-1.


Asunto(s)
Alimentación Animal/análisis , Contaminación de Alimentos/análisis , Compuestos Organotiofosforados/análisis , Plaguicidas/análisis , Alimentos Marinos/análisis , Animales , Explotaciones Pesqueras , Análisis de los Alimentos , Inocuidad de los Alimentos , Compuestos Organotiofosforados/metabolismo , Plaguicidas/metabolismo , Plantas/química , Plantas/metabolismo , Salmo salar
11.
Sci Rep ; 10(1): 15547, 2020 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-32968090

RESUMEN

Previous studies have shown that it is possible to nutritionally program gilthead seabream offspring through fish oil (FO) replacement by vegetable oils (VO) in the broodstock diet, to improve their ability to grow fast when fed low fish meal (FM) and FO diets during grow-out phase. However, in those studies broodstock performance was reduced by the VO contained diet. Therefore, the present study aimed to determine if it is possible to replace FO by a mixture of FO and rapeseed oil (RO) with a specific fatty acid profile in broodstock diets, without altering gilthead seabream broodstock reproductive performance. Besides, the study also aimed to evaluate the reproductive performance of broodstock with different expression of fatty acid desaturase 2 gene (fads2) a key enzyme in synthesis of long chain polyunsaturated fatty acids. For that purpose, broodfish having either a high (HD) or low (LD) expression of fads2 were fed for three months during the spawning season with two diets containing different fatty acid profiles and their effects on reproductive hormones, fecundity, sperm and egg quality, egg biochemical composition and fads2 expression were studied. The results showed that blood fads2 expression in females, which tended to be higher than in males, was positively related to plasma 17ß-estradiol levels. Moreover, broodstock with high blood fads2 expression showed a better reproductive performance, in terms of fecundity and sperm and egg quality, which was correlated with female fads2 expression. Our data also showed that it is feasible to reduce ARA, EPA and DHA down to 0.43, 6.6 and 8.4% total fatty acids, respectively, in broodstock diets designed to induce nutritional programming effects in the offspring without adverse effects on spawning quality. Further studies are being conducted to test the offspring with low FM and FO diets along life span.


Asunto(s)
Ácido Graso Desaturasas/genética , Ácidos Grasos/metabolismo , Reproducción/genética , Dorada/genética , Alimentación Animal , Animales , Grasas Insaturadas en la Dieta/metabolismo , Ácidos Grasos/genética , Femenino , Aceites de Pescado/genética , Aceites de Pescado/metabolismo , Metabolismo de los Lípidos/genética , Hígado/metabolismo , Dorada/crecimiento & desarrollo , Dorada/metabolismo
12.
Eur J Nutr ; 59(5): 2249-2259, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31401679

RESUMEN

PURPOSE: To identify biomarkers to assess participants' compliance in an intervention study with high intake of cod or salmon, compared to a fish-free diet. METHODS: In this randomised clinical trial, 62 healthy overweight/obese participants consumed 750 g/week of either cod (N = 21) or salmon (N = 22) across 5 weekly dinners, or were instructed to continue their normal eating habits but avoid fish intake (Control group, N = 19) for 8 weeks. RESULTS: After cod intake, serum concentrations of trimethylamine N-oxide (TMAO, p = 0.0043), creatine (p = 0.024) and 1-methylhistidine (1-MeHis, p = 0.014), and urine concentrations (relative to creatinine) of TMAO (p = 2.8 × 10-5), creatine (p = 8.3 × 10-4) and 1-MeHis (p = 0.016) were increased when compared to Control group. After salmon intake, serum concentrations of 1-MeHis (p = 2.0 × 10-6) and creatine (p = 6.1 × 10-4), and urine concentrations (relative to creatinine) of 1-MeHis (p = 4.2 × 10-6) and creatine (p = 4.0 × 10-5) were increased when compared to Control group. Serum and urine concentrations of TMAO were more increased following cod intake compared to salmon intake (p = 0.028 and 2.9 × 10-4, respectively), and serum and urine 1-MeHis concentrations were more increased after salmon intake compared to cod intake (p = 8.7 × 10-5 and 1.2 × 10-4, respectively). Cod and salmon intake did not affect serum and urine concentrations of 3-methylhistidine, and only marginally affected concentrations of free amino acids and amino acid metabolites. CONCLUSION: TMAO measured in serum or urine is a potential biomarker of cod intake, and 1-MeHis measured in serum or urine is a potential biomarker of salmon intake.


Asunto(s)
Creatina , Salmón , Adulto , Animales , Biomarcadores , Humanos , Metilaminas , Metilhistidinas , Obesidad , Sobrepeso
13.
Br J Nutr ; 123(4): 419-427, 2020 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-31760958

RESUMEN

Low serum concentrations of several vitamins have been linked to increased risk of diseases including insulin resistance and type 2 diabetes (T2D). Fish is a good source of several vitamins, and the prevalence of T2D is low in populations with high fish intake. The aim of the present study was to investigate the effects of high fish intake on vitamins in serum from adults in autumn in South-Western Norway at 60° north latitude. In this randomised clinical trial, sixty-three healthy participants with overweight/obesity consumed 750 g/week of either cod (n 22) or salmon (n 22) as five weekly dinners or were instructed to continue their normal eating habits but avoid fish intake (Control group, n 19) for 8 weeks. The estimated vitamin D intake was significantly increased in the Salmon group when compared with the Cod group (P = 6·3 × 10-4) and with the Control group (P = 3·5 × 10-6), with no differences between groups for estimated intake of vitamins A, B1, B2, B3, B6, B9, C and E. Serum 25-hydroxyvitamin D3 concentration was decreased in all groups after 8 weeks; however, the reduction in the Salmon group was significantly smaller compared with the Cod group (P = 0·013) and the Control group (P = 0·0060). Cod and salmon intake did not affect serum concentrations of the other measured vitamins. The findings suggest that 750 g/week of salmon was not sufficient to prevent a decrease in serum 25-hydroxyvitamin D3 in autumn in South-Western Norway in adults with overweight/obesity.


Asunto(s)
Dieta/métodos , Conducta Alimentaria/fisiología , Salmón , Alimentos Marinos , Deficiencia de Vitamina D/prevención & control , Adolescente , Adulto , Animales , Calcifediol/sangre , Femenino , Geografía , Humanos , Masculino , Comidas , Persona de Mediana Edad , Noruega , Estado Nutricional , Estaciones del Año , Adulto Joven
15.
Toxins (Basel) ; 10(9)2018 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-30223534

RESUMEN

Impaired growth, immunity, and intestinal barrier in mammals, poultry, and carp have been attributed to the mycotoxin deoxynivalenol (DON). The increased use of plant ingredients in aquaculture feed implies a risk for contamination with mycotoxins. The effects of dietary DON were explored in 12-month-old Atlantic salmon (Salmo salar) (start weight of 58 g) that were offered a standard feed with non-detectable levels of mycotoxins (control group) or 5.5 mg DON/kg feed (DON group). Each group comprised two tanks with 25 fish per tank. Five fish from each tank were sampled eight weeks after the start of the feeding trial, when mean weights for the control and DON groups were 123.2 g and 80.2 g, respectively. The relative expression of markers for three tight junction proteins (claudin 25b, occludin, and tricellulin) were lower, whereas the relative expression of a marker for proliferating cell nuclear antigen was higher in both the mid-intestine and the distal intestine in fish fed DON compared with fish from the control group. The relative expression of markers for two suppressors of cytokine signaling (SOCS1 and SOCS2) were higher in the distal intestine in fish fed DON. There was no indication of inflammation attributed to the feed in any intestinal segments. Our findings suggest that dietary DON impaired the intestinal integrity, while an inflammatory response appeared to be mitigated by suppressors of cytokine signaling. A dysfunctional intestinal barrier may have contributed to the impaired production performance observed in the DON group.


Asunto(s)
Mucosa Intestinal/efectos de los fármacos , Salmo salar , Tricotecenos/toxicidad , Animales , Dieta/veterinaria , Femenino , Proteínas de Peces/genética , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Masculino , Salmo salar/genética , Salmo salar/metabolismo , Transducción de Señal/efectos de los fármacos , Proteínas Supresoras de la Señalización de Citocinas/genética , Proteínas de Uniones Estrechas/genética
16.
Food Chem Toxicol ; 121: 374-386, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30179646

RESUMEN

Post-smolt Atlantic salmon (Salmo salar) were fed with standard feed added one of five concentrations of either pure deoxynivalenol (DON; 0.5-6 mg/kg) or pure ochratoxin A (OTA; 0.2-2.4 mg/kg), or no added toxins for up to 8 weeks. Performance effects (feed intake, feed efficiency, gain, length and condition factor), various clinical biochemical parameters, packed cell volume and vaccination response against Aeromonas salmonicidae were all inversely correlated with DON dose, whereas relative liver weight increased with DON dose. In fish fed OTA, however, the effects at the doses tested were rather small. We observed no effects of OTA exposure on performance parameters, but some clinical biochemical parameters tended to increase with OTA dose primarily at 3 weeks, and compared with controls OTA exposure caused increased mRNA expression of two immune markers in the spleen. No liver histopathological effects were found from DON or OTA exposure. For DON, we derived a BMDL20 of 0.3 mg/kg feed for reduced total protein in plasma, a BMDL5 of 0.5 mg/kg feed for reduced condition factor, and a NOAEL of 1 mg/kg feed for DON. For OTA, a BMDL or NOAEL could not be derived (>2.4 mg/kg).


Asunto(s)
Alimentación Animal/análisis , Ocratoxinas/toxicidad , Salmo salar , Tricotecenos/toxicidad , Animales , Dieta , Relación Dosis-Respuesta a Droga , Contaminación de Alimentos , Regulación de la Expresión Génica/efectos de los fármacos , Ocratoxinas/administración & dosificación , Bazo/efectos de los fármacos , Bazo/metabolismo , Tricotecenos/administración & dosificación
17.
Br J Nutr ; 119(6): 599-609, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29397797

RESUMEN

The aim of the study was to investigate how the dietary sterol composition, including cholesterol, phytosterol:cholesterol ratio and phytosterols, affect the absorption, biliary excretion, retention, tissue storage and distribution of cholesterol and individual phytosterols in Atlantic salmon (Salmo salar L.). A feeding trial was conducted at two different temperatures (6 and 12°C), using nine different diets with varying contents of phytosterols, cholesterol and phytosterol:cholesterol ratio. Cholesterol retention values were clearly dependent on dietary cholesterol, and showed that fish fed cholesterol levels <1000 mg/kg feed produced considerable quantities of cholesterol de novo. Despite this production, cholesterol content increased with increasing dietary cholesterol in liver, plasma, bile, muscle, adipose tissue and whole fish at 12°C, and in plasma, bile and whole fish at 6°C. The tissue sterol composition generally depended on the dietary cholesterol content and on the dietary phytosterol:cholesterol ratio, but not on the dietary phytosterol content in itself. Campesterol and brassicasterol appeared to be the phytosterols with the highest intestinal absorption in Atlantic salmon. There was a high biliary excretion of campesterol, but not of brassicasterol, which accumulated in tissues and particularly in adipose tissue, with 2-fold-higher retention at 12°C compared with 6°C. Campesterol had the second highest retention of the phytosterols in the fish, but with no difference between the two temperatures. Other phytosterols had very low retention. Although brassicasterol retention decreased with increasing dietary phytosterols, campesterol retention decreased with increasing dietary cholesterol, indicating differences in the uptake mechanisms for these two sterols.


Asunto(s)
Dieta/veterinaria , Salmo salar , Esteroles/análisis , Animales , Colestadienoles/administración & dosificación , Colestadienoles/farmacocinética , Colesterol/administración & dosificación , Colesterol/análogos & derivados , Colesterol/farmacocinética , Absorción Intestinal , Hígado/metabolismo , Fitosteroles/administración & dosificación , Fitosteroles/farmacocinética
18.
Fish Shellfish Immunol ; 72: 57-68, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29080687

RESUMEN

The aim of this study was to compare how different dietary vegetable oil n-6/n-3 ratios affect gene responses involved in inflammation, signaling pathways, fatty acid synthesis and oxidation, oxidation and apoptosis as well as eicosanoid production in salmon head kidney tissues and isolated head kidney leukocytes. Salmon smolts (200 g) were fed four different diets where the main lipid components were palm oil (n-6/n-3 ratio = 0.7), rapeseed oil (n-6/n-3 ratio = 0.9), and soybean oil (n-6/n-3 ratio = 2.4) and a high soybean oil diet with an n-6/n-3 ratio = 4. Both head kidney tissue and leukocytes isolated from head kidneys were sampled from the four diets, but from different fish. Leukocytes isolated from the head kidneys were seeded into culture wells and added lipopolysaccharide (LPS) to induce inflammatory responses. Controls without LPS were included. Head kidney leukocytes and the tissues should have the same phenotype reflecting the different diets. Interleukin 1ß (IL-1ß) transcription was elevated in head kidney tissue and especially in LPS treated leukocytes isolated from soybean oil (n-6/n-3 = 2.4) fed salmon, which confirmed the suitability of the in vitro model in this experiment. Leukocytes, treated with LPS, and isolated from salmon fed the soybean oil diet (n-6/n-3 = 2.4) also upregulated tumor necrosis factor alpha (tnf-α), cyclooxygenase (cox2), prostaglandin D and E synthase (ptgds, ptges), fatty acyl synthase (fas), 5 and 6 desaturases (5des, 6 des) and a fatty acid translocase protein (cd36) when compared to the other diets. The results suggest that diets with a specific n-6/n-3 ratio influence the transcription of pro-inflammatory genes and may be cross-linked to transcription of selected fatty acid metabolism genes. Salmon fed the palm oil diet (n-6/n-3 = 0.7) showed a lower expression of inflammatory genes. Instead, peroxisome proliferator activated receptor ß1 (pparß1), acyl coenzyme A (aco), apoptosis regulator (bax) and superoxide dismutase (sod) were upregulated in leukocytes in vitro, while head kidney tissue transcription of a dendritic marker (cd83) was lower than measured in tissues from fish fed the other diets. The concentration of LTB4 (10-20 ng/mL) were relatively constant in leukocyte supernatants, all diets. Head kidney leukocytes from soybean oil (n-6/n-3 = 2.4) fed fish produced LPS induced PGE2 (mean 0.5 ng/mL) while leukocytes isolated from palm oil diet (n-6/n-3 = 0.7) secreted very high amounts of LTB5 (50-70 ng/mL). In addition, equal amounts of LPS induced PGE2 and PGE3 (mean 0, 5 ng/mL) were produced, indicating that the n-6/n-3 ratio of this saturated fatty acid may have a specific impact on eicosanoid production in the head kidney of salmon.


Asunto(s)
Ácidos Grasos Omega-3/metabolismo , Ácidos Grasos Omega-6/metabolismo , Regulación de la Expresión Génica , Riñón Cefálico/inmunología , Leucocitos/inmunología , Salmo salar/genética , Animales , Apoptosis , Grasas de la Dieta/metabolismo , Eicosanoides/metabolismo , Riñón Cefálico/metabolismo , Inmunidad Innata , Leucocitos/metabolismo , Estrés Oxidativo , Salmo salar/inmunología , Salmo salar/metabolismo
19.
Gen Comp Endocrinol ; 250: 21-35, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28576420

RESUMEN

The present study was designed to investigate potential effects of arachidonic acid (ARA) on the reproductive physiology of female Atlantic cod (Gadus morhua L.). Two-year old Atlantic cod of both sexes were equally distributed into eight sea cages after completion of their first spawning in May 2005. Four experimental groups were established and fed diets with different levels of ARA corresponding to 0.5, 1, 2 and 4% of total fatty acid. Ovarian growth and development was documented every month. Fatty acid composition was analysed in ovaries, liver and plasma at the beginning of the experiment, one month prior to spawning, and in spent fish, one month after spawning was completed. Plasma concentrations of estradiol-17ß, testosterone and vitellogenin, and ovarian gene transcript levels of steroidogenic acute regulatory protein (star), P450aromatase (cyp19a1a) and 20ß-hydroxy steroid dehydrogenase (20bhsd/cbr1) were monitored every month in fish fed the experimental diets and related to oocyte stage. Potential fecundity was calculated based on ovarian samples taken one month before onset of spawning. Ovarian and plasma ARA levels were highly correlated to dietary ARA levels. There was a net accumulation of ARA compared to other essential fatty acids in ovarian tissue that was reflected in a decrease in EPA:ARA ratio. Plasma concentrations of vitellogenin, estradiol-17ß and testosterone and key gene transcript levels were affected by dietary ARA and stage of maturation. The results show that ARA has a significant influence on the reproductive physiology of female Atlantic cod.


Asunto(s)
Ácido Araquidónico/farmacología , Dieta , Gadus morhua/fisiología , Reproducción/efectos de los fármacos , Animales , Ácido Araquidónico/sangre , Ácido Eicosapentaenoico/sangre , Estradiol/sangre , Femenino , Gadus morhua/sangre , Regulación del Desarrollo de la Expresión Génica , Hígado/metabolismo , Masculino , Oocitos/metabolismo , Ovario/crecimiento & desarrollo , Ovario/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Estaciones del Año , Testosterona/sangre , Vitelogeninas/sangre
20.
Br J Nutr ; 117(10): 1368-1378, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28606215

RESUMEN

The prevalence of type 2 diabetes (T2D) is low in populations with a high fish intake; however prospective studies with fish intake have shown positive, negative or no association between fish intake and the risk for T2D. The aim of this study was to investigate the effects of high intake of lean or fatty fish on glucose tolerance, leucocyte membrane fatty acid composition and leucocyte function in overweight/obese adults. In this randomised clinical trial, sixty-eight healthy overweight/obese participants consumed 750 g/week of either lean or fatty fish as dinners, or were instructed to continue their normal eating habits but to avoid fish intake (control group), for 8 weeks. Energy and macronutrient intake and physical activity were not changed within the groups during the study period. High intake of fatty fish, but not of lean fish, significantly improved glucose regulation 120 min postprandially (P=0·012), but did not affect fasting glucose concentration. A smaller increase in fasting to 120 min postprandial insulin C-peptide concentration was seen after fatty fish intake (P=0·012). Lean fish increased the DHA content in leucocyte membranes (P=0·010), and fatty fish increased the total content of n-3 PUFA (P=0·00016) and reduced the content of n-6 PUFA (P=0·00057) in leucocyte membranes. Lean and fatty fish intake did not affect phagocytosis of bacteria ex vivo. The findings suggest that high intake of fatty fish, but not of lean fish, beneficially affected postprandial glucose regulation in overweight/obese adults, and may therefore prevent or delay the development of T2D in this population.


Asunto(s)
Glucemia , Ácidos Grasos Omega-3/metabolismo , Peces , Hiperglucemia , Leucocitos/metabolismo , Sobrepeso , Adulto , Animales , Biomarcadores , Grasas de la Dieta , Femenino , Análisis de los Alimentos , Humanos , Inflamación/metabolismo , Masculino , Persona de Mediana Edad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...