Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Oecologia ; 193(2): 449-460, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32556592

RESUMEN

Climate models predict increasing amounts of precipitation and relative atmospheric humidity for high latitudes in the Northern Hemisphere. Therefore, tree species must adjust to the new climatic conditions. We studied young silver birches (Betula pendula Roth) in a long-term (2012-2018) free air humidity manipulation experiment, with the aim of clarifying the acclimation mechanisms to elevated relative atmospheric humidity. In 2016-2018, stem radial increment (measured by dendrometers) and leaf abscission were monitored, and the leaf N and P resorption efficiencies were determined. Biomass allocation was estimated, and the seasonal dynamics of foliar NPK storage was assessed. Humidification increased N resorption efficiency by 11%. The annual means of N resorption efficiency varied from 41 to 52% in control and from 50 to 59% in humidified stands. The P resorption efficiency was strongly affected by weather conditions and varied between years from 25 to 66%. Higher foliar NPK storages at the end of growing season and delayed leaf fall allowed to extend the growth period in humidified plots, which resulted in a week longer stem radial growth. Although stem diameter growth of humidified birches recovered after 5 years, tree height retardation persisted over the seven study years, resulting in increased stem taper (diameter to height ratio) under humidification. Additionally, humidification increased the share of the bark in stem biomass and the number of branches per crown length. The acclimation of silver birches to increased air humidity entails changes in forest N cycle and in birch timber quality.


Asunto(s)
Betula , Nitrógeno , Bosques , Humedad , Hojas de la Planta , Árboles
2.
Sci Total Environ ; 661: 441-448, 2019 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-30677689

RESUMEN

Processes determining the carbon (C) balance of a forest ecosystem are influenced by a number of climatic and environmental factors. In Northern Europe, a rise in atmospheric humidity and precipitation is predicted. The study aims to ascertain the effect of elevated atmospheric humidity on the components of the C budget and on the C-sequestration capacity of a young birch forest. Biomass production, soil respiration, and other C fluxes were measured in young silver birch (Betula pendula Roth) stands growing on the Free Air Humidity Manipulation (FAHM) experimental site, located in South-East Estonia. The C input fluxes: C sequestration in trees and understory, litter input into soil, and methane oxidation, as well as C output fluxes: soil heterotrophic respiration and C leaching were estimated. Humidified birch stands stored C from the atmosphere, but control stands can be considered as C neutral. Two years of elevated air humidity increased C sequestration in the understory but decreased it in trees. Humidification treatment increased remarkably the C input to the soil. The main reason for such an increase was the higher root litter input into the soil, brought about by the more than two-fold increase of belowground biomass production of the understory in the humidification treatment. Elevated atmospheric humidity increased C sequestration in young silver birch stands, mitigating increasing CO2 concentration in the atmosphere. However, the effect of elevated atmospheric humidity is expected to decrease over time, as plants and soil organisms acclimate, and new communities emerge.


Asunto(s)
Biomasa , Secuestro de Carbono , Bosques , Humedad , Suelo/química , Atmósfera , Betula , Estonia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA