Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Antimicrob Agents Chemother ; 65(7): e0245020, 2021 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-33972245

RESUMEN

Compared to other species of Candida yeasts, the growth of Candida glabrata is inhibited by many different strains of Saccharomyces killer yeasts. The ionophoric K1 and K2 killer toxins are broadly inhibitory to all clinical isolates of C. glabrata from patients with recurrent vulvovaginal candidiasis, despite high levels of resistance to clinically relevant antifungal therapeutics.


Asunto(s)
Candida glabrata , Candidiasis Vulvovaginal , Antifúngicos/farmacología , Candida glabrata/genética , Candidiasis Vulvovaginal/tratamiento farmacológico , Farmacorresistencia Fúngica/genética , Femenino , Humanos , Ionóforos , Pruebas de Sensibilidad Microbiana , Saccharomyces cerevisiae/genética
2.
PLoS Genet ; 17(2): e1009341, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33539346

RESUMEN

Killer toxins are extracellular antifungal proteins that are produced by a wide variety of fungi, including Saccharomyces yeasts. Although many Saccharomyces killer toxins have been previously identified, their evolutionary origins remain uncertain given that many of these genes have been mobilized by double-stranded RNA (dsRNA) viruses. A survey of yeasts from the Saccharomyces genus has identified a novel killer toxin with a unique spectrum of activity produced by Saccharomyces paradoxus. The expression of this killer toxin is associated with the presence of a dsRNA totivirus and a satellite dsRNA. Genetic sequencing of the satellite dsRNA confirmed that it encodes a killer toxin with homology to the canonical ionophoric K1 toxin from Saccharomyces cerevisiae and has been named K1-like (K1L). Genomic homologs of K1L were identified in six non-Saccharomyces yeast species of the Saccharomycotina subphylum, predominantly in subtelomeric regions of the genome. When ectopically expressed in S. cerevisiae from cloned cDNAs, both K1L and its homologs can inhibit the growth of competing yeast species, confirming the discovery of a family of biologically active K1-like killer toxins. The sporadic distribution of these genes supports their acquisition by horizontal gene transfer followed by diversification. The phylogenetic relationship between K1L and its genomic homologs suggests a common ancestry and gene flow via dsRNAs and DNAs across taxonomic divisions. This appears to enable the acquisition of a diverse arsenal of killer toxins by different yeast species for potential use in niche competition.


Asunto(s)
Ascomicetos/genética , Variación Genética , Factores Asesinos de Levadura/genética , Saccharomycetales/genética , Ascomicetos/clasificación , Ascomicetos/virología , Evolución Molecular , Flujo Génico , Transferencia de Gen Horizontal , Filogenia , ARN Bicatenario/genética , ARN Viral/genética , Saccharomyces/clasificación , Saccharomyces/genética , Saccharomyces/virología , Saccharomyces cerevisiae/genética , Saccharomycetales/clasificación , Saccharomycetales/virología , Especificidad de la Especie , Totivirus/genética
3.
PLoS One ; 15(7): e0230767, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32730254

RESUMEN

The injection of laboratory animals with pathogenic microorganisms poses a significant safety risk because of the potential for injury by accidental needlestick. This is especially true for researchers using invertebrate models of disease due to the required precision and accuracy of the injection. The restraint of the greater wax moth larvae (Galleria mellonella) is often achieved by grasping a larva firmly between finger and thumb. Needle resistant gloves or forceps can be used to reduce the risk of a needlestick but can result in animal injury, a loss of throughput, and inconsistencies in experimental data. Restraint devices are commonly used for the manipulation of small mammals, and in this manuscript, we describe the construction of two devices that can be used to entrap and restrain G. mellonella larvae prior to injection with pathogenic microbes. These devices reduce the manual handling of larvae and provide an engineering control to protect against accidental needlestick injury while maintaining a high rate of injection.


Asunto(s)
Inyecciones/instrumentación , Microbiología/instrumentación , Mariposas Nocturnas/microbiología , Prevención de Accidentes , Animales , Descontaminación/instrumentación , Equipo Reutilizado , Larva/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...