Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Chem Phys ; 131(22): 224106, 2009 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-20001023

RESUMEN

We report rigorous calculations of rovibrational energies and dipole transition intensities for three molecules using a new version of the code MULTIMODE. The key features of this code which permit, for the first time, such calculations for moderately sized but otherwise general polyatomic molecules are briefly described. Calculations for the triatomic molecule BF(2) are done to validate the code. New calculations for H(2)CO and H(2)CS are reported; these make use of semiempirical potentials but ab initio dipole moment surfaces. The new dipole surface for H(2)CO is a full-dimensional fit to the dipole moment obtained with the coupled-cluster with single and double excitations and a perturbative treatment of triple excitations method with the augmented correlation consistent triple zeta basis set. Detailed comparisons are made with experimental results from a fit to relative data for H(2)CS and absolute intensities from the HITRAN database for H(2)CO.

2.
J Chem Phys ; 125(3): 34305, 2006 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-16863348

RESUMEN

Using coupled-cluster approach full six-dimensional analytic potential energy surfaces for two cyclic SiC(3) isomers [C-C transannular bond (I) and Si-C transannular bond (II)] have been generated and used to calculate anharmonic vibrational wave functions. Several strong low-lying anharmonic resonances have been found. In both isomers already some of the fundamental transitions cannot be described within the harmonic approximation. Adiabatic electron affinities and ionization energies have been calculated as well. The Franck-Condon factors for the photodetachment processes c-SiC(3) (-)(I)-->c-SiC(3)(I) and c-SiC(3) (-)(II)-->c-SiC(3)(II) are reported.

3.
J Chem Phys ; 122(3): 34301, 2005 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-15740195

RESUMEN

A double minimum six-dimensional potential energy surface (PES) is determined in symmetry coordinates for the most stable rhombic (D2h) B4 isomer in its 1Ag electronic ground state by fitting to energies calculated ab initio. The PES exhibits a barrier to the D4h square structure of 255 cm(-1). The vibrational levels (J=0) are calculated variationally using an approach which involves the Watson kinetic energy operator expressed in normal coordinates. The pattern of about 65 vibrational levels up to 1600 cm(-1) for all stable isotopomers is analyzed. Analogous to the inversion in ammonia-like molecules, the rhombus rearrangements lead to splittings of the vibrational levels. In B4 it is the B1g (D4h) mode which distorts the square molecule to its planar rhombic form. The anharmonic fundamental vibrational transitions of 11B4 are calculated to be (splittings in parentheses): G(0)=2352(22) cm(-1), nu1(A1g)=1136(24) cm(-1), nu2(B1g)=209(144) cm(-1), nu3(B2g)=1198(19) cm(-1), nu4(B2u)=271(24) cm(-1), and nu5(Eu)=1030(166) cm(-1) (D4h notation). Their variations in all stable isotopomers were investigated. Due to the presence of strong anharmonic resonances between the B1g in-plane distortion and the B2u out-of-plane bending modes, the higher overtones and combination levels are difficult to assign unequivocally.

4.
J Chem Phys ; 120(13): 6072-84, 2004 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-15267491

RESUMEN

Using a full six-dimensional ab initio potential energy surface and nuclear motion Hamiltonian, time-dependent computations were performed for the cis-trans isomerization of HONO. The multiconfiguration time-dependent Hartree method was used to propagate the six-dimensional wave packets. The initial excitations were chosen to be excitations of the local stretch modes and the HON local bend mode. The energy redistribution within 2 to 5 ps in the energy region of the OH stretching modes in both isomers was analyzed. The Fourier transformed frequency domain spectra were attributed to the eigenstates calculated previously by the time-independent variational approach. The results are also compared with classical trajectory computations of Thomson et al. on empirical surfaces. In agreement with matrix experiments, the cis-->trans isomerization was found to be much faster than the opposite interconversion. The intramolecular dynamics were found to be very complex involving numerous weakly excited delocalized eigenstates and anharmonic resonances. Particularly in the cis-isomer, the excitation of the HON bending local mode leads to fast energy redistribution in cis-trans delocalized modes. Neither the excitation of the OH stretching local mode in the cis nor in the trans form produces a fast isomerization, in agreement with the strongly localized characters of the corresponding eigenstates calculated variationally by Richter et al. and the gas phase spectra of HONO.

5.
J Chem Phys ; 120(3): 1306-17, 2004 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-15268256

RESUMEN

Ab initio calculations on the six-dimensional cis--trans double minimum potential energy surface of the electronic ground state of the HONO molecule were performed using a coupled cluster approach. An analytic fit to the data points was established. The interconversion barrier was calculated to be 4105 cm(-1). The nuclear motion problem was solved variationally using a full six-dimensional Hamiltonian in internal coordinates. The eigenstates up to about 3650 cm(-1) were tentatively assigned by harmonic quantum numbers. The assignment was based on the mean values of the internal coordinates of the six-dimensional eigenfunctions and on a comparison of the eigenenergies with those calculated by second-order perturbation theory from a full quartic force field in dimensionless normal coordinates. In cold matrices the trans- and the cis-OH nu(1) stretching modes and the first trans- and cis-NO 2nu(2) stretching overtones lead to isomerization. In the isolated molecule these modes (J=0) were found to be entirely localized. However, several overtones of the nu(4) ONO bending and nu(5) N-O stretching, which are close in energy to the OH stretch and combined with the torsional mode, were found to be strongly cis-trans delocalized.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...