Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(6)2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38542232

RESUMEN

Chitosan (CS) is a polysaccharide obtainable by the deacetylation of chitin, which is highly available in nature and is consequently low-cost. Chitosan is already used in the biomedical field (e.g., guides for nerve reconstruction) and has been proposed as a biomaterial for tissue regeneration in different body districts, including bone tissue. The interest in chitosan as a biomaterial stems from its ease of functionalization due to the presence of reactive groups, its antibacterial properties, its ease of processing to obtain porous matrices, and its inherent similarity to polysaccharides that constitute the human extracellular matrix, such as hyaluronic acid (HA). Here, chitosan was made to react with succinic anhydride to develop a negatively charged chitosan (SCS) that better mimics HA. FT-IR and NMR analyses confirmed the presence of the carboxylic groups in the modified polymer. Four different electrospun matrices were prepared: CS, SCS, a layer-by-layer matrix (LBL), and a matrix with both CS and SCS simultaneously electrospun (HYB). All the matrices containing SCS showed increased human osteoblast proliferation, mineralization, and gene expression, with the best results obtained with HYB compared to the control (CS). Moreover, the antibacterial potential of CS was preserved in all the SCS-containing matrices, and the pure SCS matrix demonstrated a significant reduction in bacterial proliferation of both S. aureus and E. coli.


Asunto(s)
Quitosano , Humanos , Quitosano/farmacología , Quitosano/química , Andamios del Tejido/química , Espectroscopía Infrarroja por Transformada de Fourier , Escherichia coli , Staphylococcus aureus , Ingeniería de Tejidos/métodos , Materiales Biocompatibles/farmacología , Materiales Biocompatibles/química , Polisacáridos , Antibacterianos/farmacología
2.
Nanoscale ; 15(14): 6770-6784, 2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-36946426

RESUMEN

The homogeneous distribution of electric current (electrical homogeneity) is not guaranteed in nanowire electrodes but is crucial for the stability of the electrode and actually desirable in most applications. Despite the relevance of this feature, it is common practice to perform qualitative assessments at the electrode scale, thus masking local effects. To address this issue, we have developed a computational strategy to aid in the design of nanowire electrodes with improved electrical homogeneity. Nanowire electrodes are modeled as two-dimensional networks of stick and junction resistors (with resistance Rw and Rj, respectively) to simulate the electric conduction process. Electrodes are discretized into regular grids of squares and the electrical power of the network contained in each square is computed. The mismatch between the areal power density of the entire electrode and that of the squares provides a quantitative electrical homogeneity evaluation. Repeating the analysis with squares of different size yields an evaluation that spans across length scales. A scalar indicator, coined the homogeneity index, summarizes the results of the multiscale evaluation. The proposed strategy is employed to assess the electrical homogeneity of silver nanowire electrodes through the analysis of scanning electron microscopy images. Our results agree with the outcomes of the experimental assessment performed on the same electrodes. Parametric studies are performed by varying nanowire content and nanowire-to-junction resistance ratio Rw/Rj. We observe that a significant reduction of contact resistance is not necessary to ensure a high degree of homogeneity. The ideal condition of negligible junction resistance (Rw ≫ Rj) leads to the best-case scenario, a situation which is closely approached if Rw ≈ Rj (15% difference at the most in terms of homogeneity index).

3.
ACS Omega ; 8(5): 4655-4666, 2023 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-36777588

RESUMEN

In this work, we explored a microwave-assisted glycolysis process to chemically recycle rigid polyurethane (PU) foam waste to obtain a single-phase product with suitable physio-chemical properties as a secondary raw material for the preparation of new rigid PU products. Such an approach was compared to a conventionally heated (ConvH) process, analyzing the performances of different catalysts. The use of microwaves allowed a 94% decrease in the reaction time scale of rigid PU depolymerization, with a concurrent 45% reduction in energy expense. By using a PU/diethylene glycol mass ratio of 1.5, best performances were obtained with a 30 mmol/100gPU potassium acetate concentration, both in terms of the product viscosity and aromatic amine byproduct content. The glycolysis products recovered were employed in substitution to virgin polyol for rigid PU foam preparation, showing improved compressive strength and comparable thermal insulation properties up to a 30% content with respect to the traditional non-recycled counterpart.

4.
Nanomaterials (Basel) ; 13(3)2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36770396

RESUMEN

The present work investigates the effect of ultrasounds in the performance of combined advanced oxidation processes (AOPs) on the degradation of formaldehyde (HCHO)-polluted aqueous solutions for potential application in wastewater treatment. Different heterogeneous nanostructured catalysts based on TiO2 and FeSO4 for photocatalysis and the Fenton process were employed after electrospray deposition on electrospun nanofibrous membranes. Such systems were tested, without the use of any added hydrogen peroxide, by varying the combinations among the selected AOPs in a batch reactor configuration. The results show that, in the absence of a Fenton reaction, ultrasounds provided a significantly increased formaldehyde photocatalytic abatement, probably by increasing the concentration of active species through a different set of reactions while providing a favorable mass transfer regime by the cavitational effect. Due to the faster kinetics of the photo-Fenton process, thanks to its partial homogeneous nature, such a beneficial effect is more limited for the sono-photo-Fenton configuration. On the other hand, the employment of a sono-photocatalytic-Fenton process revealed a synergic effect that provided the best results, reducing the formaldehyde concentration to less than 99% after 240 min. Further analysis showed that, due to a mutual influence, only a tailored TiO2/FeSO4 ratio on the membranes was able to display the best performance.

5.
ACS Omega ; 7(25): 21775-21787, 2022 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-35785267

RESUMEN

Flame retardant (FR) textiles were obtained by surface treatments of polyamide 66 fabrics with microwave (MW) plasma technology in order to reduce the amount of FR involved in the fabric finishing process. More specifically, MW vacuum plasma was employed for polymer surface activation by using a helium/oxygen (He/O2) gas mixture, evaluating the effect of different treatment parameters on the affinity toward thiourea impregnation. Surface fabric modification was investigated both in terms of uniformity and increased thiourea absorption by infrared spectroscopy, wicking properties, and gravimetric characterization to define an operative window for plasma treatment conditions. According to the results obtained, the dry add-on content of thiourea improved up to 38%, thanks to the increase of the fabric surface activation. The effectiveness of plasma treatment resulted in an absolute increase up to 2% in limiting oxygen index (LOI) performance with respect to untreated fabric. As a consequence, a drastic reduction of 50% in thiourea concentration was required to achieve a similar fire retardant performance for plasma-treated fabric. On the basis of these preliminary results, a design of experiment (DoE) methodology was applied to the selected parameters to build a suitable response surface, experimentally validated, and to identify optimized treatment conditions. At the end, a final LOI index up to 43% has been reached.

6.
Nanomaterials (Basel) ; 12(6)2022 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-35335774

RESUMEN

PVDF electrospun membranes were prepared by employing different mixtures of solvents and diverse electrospinning parameters. A comprehensive investigation was carried out, including morphology, nanofiber diameter, crystallinity, ß-phase fraction, and piezoelectric response under external mechanical strain. It was demonstrated that by using low-toxicity DMSO as the solvent, PVDF membranes with good morphology (bead-free, smooth surface, and uniform nanofiber) can be obtained. All the fabricated membranes showed crystallinity and ß-phase fraction above 48% and 80%, respectively; therefore, electrospinning is a good method for preparing PVDF membranes with the piezoelectric properties. Moreover, we considered a potential effect of the solvent properties and the electrospinning parameters on the final piezoelectric properties. When PVDF membranes with different ß-phase fractions and crystallinity values are applied to make the piezoelectric transducers, various piezoelectric voltage outputs can be obtained. This paper provides an effective and efficient strategy for regulating the piezoelectric properties of PVDF electrospun membranes by controlling both solvent dipole moment and process parameters. To the best of our knowledge, this is the first time that the influence of a solvent's dipole moment on the piezoelectric properties of electrospun materials has been reported.

7.
Gels ; 8(2)2022 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-35200494

RESUMEN

Medical applications stimulate the need for materials with broad potential. Chitosan, the partially deacetylated derivative of chitin, offers many interesting characteristics, such as biocompatibility and chemical derivatization possibility. In the present study, porous scaffolds composed of electrospun interwoven nanometric fibers are produced using chitosan or chitosan functionalized with aliphatic chains of twelve, fourteen or sixteen methylene groups. The scaffolds were thoroughly characterized by SEM and XPS. The length of the aliphatic tail influenced the physico-chemical and dynamic mechanical properties of the functionalized chitosan. The electrospun membranes revealed no interaction of Gram+ or Gram- bacteria, resulting in neither antibacterial nor bactericidal, but constitutively sterile. The electrospun scaffolds demonstrated the absence of cytotoxicity, inflammation response, and eryptosis. These results open the door to their application for blood purification devices, hemodialysis membranes, and vascular grafts.

8.
Bioengineering (Basel) ; 8(1)2020 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-33375053

RESUMEN

During anticancer drug development, most compounds selected by in vitro screening are ineffective in in vivo studies and clinical trials due to the unreliability of two-dimensional (2D) in vitro cultures that are unable to mimic the cancer microenvironment. Herein, HCC1954 cell cultures on electrospun polycaprolactone (PCL) were characterized by morphological analysis, cell viability assays, histochemical staining, immunofluorescence, and RT-PCR. Our data showed that electrospun PCL allows the in vitro formation of cultures characterized by mucopolysaccharide production and increased cancer stem cell population. Moreover, PCL-based cultures were less sensitive to doxorubicin and electroporation/bleomycin than those grown on polystyrene plates. Collectively, our data indicate that PCL-based cultures may be promising tools for preclinical studies.

9.
Nanomaterials (Basel) ; 10(1)2020 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-31947631

RESUMEN

In this paper we studied the combination of advanced oxidation processes (AOPs), i.e., TiO2-based photocatalysis and photo-Fenton process, on the degradation of aqueous solutions containing a low (90 ppm) concentration of formaldehyde. Heterogeneous nanostructured catalysts, supported on polymeric nanofibers, were used; for comparison, some homogeneous or partly heterogeneous systems were also analyzed. Furthermore, to make the process more sustainable (in terms of costs and safety) no hydrogen peroxide was added to the system. The results showed that the combination of AOPs gave a synergy since the presence of iron was beneficial in promoting the photocatalytic activity of TiO2 while TiO2 was beneficial in promoting the photo-Fenton reaction. Moreover, very good results were obtained using fully heterogeneous nanostructured catalysts (based on TiO2 and FeSO4), without the need to add H2O2.

10.
Polymers (Basel) ; 12(1)2019 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-31877984

RESUMEN

The present work examines the influence of different carbon-based fillers on the performance of electrically conductive polymer blend composites. More specifically, we examined and compared the effects of graphene (GR), carbon nanotubes (CNTs) and carbon black (CB) on a PC/ABS matrix by morphological investigation, electrical and physic-mechanical characterization. Electrical analyses showed volume resistivity decreased when the CNTs and CB content were increased, although the use of melt-mixed GR did not really influence this property. For the latter, solution blending was found to be more suitable to obtain better GR dispersion, and it obtained electrical percolation with a graphene content ranging from 0.5% to 1% by weight, depending on the solvent removal method that was applied. There was a gradual improvement in all of the composites' dielectric properties, in terms of loss factor, with temperature and the concentration of the filler. As expected, the use of rigid fillers increased the composite stiffness, which is reflected in a continuous increment in the composites' modulus of elasticity. The improvements in tensile strength and modulus were coupled with a reduction in impact strength, indicating a decrease in polymer toughness and flexibility. TEM micrographs allowed us to confirm previous results from studies on filler dispersion. According to this study and the comparison of the three carbon-based fillers, CNTs are the best filler choice in terms of electrical and mechanical performance.

11.
ACS Omega ; 4(9): 14114-14123, 2019 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-31497731

RESUMEN

A methodological framework implementing laboratory activities and life cycle assessment is presented and applied to determine which parameters should be considered to develop biobased rigid polyurethane foams for thermal insulation with improved environmental performances when compared to their fossil counterparts. The framework was applied to six partially biobased (produced from bio-based polyols obtained from azelaic acid and/or lignin) and one fossil-based formulations. A comprehensive set of impact assessment categories was investigated including uncertainty and sensitivity analysis. Results proved that physical characteristics such as thermal conductivity and density are the most important variable to be optimized to guarantee better environmental performances of biobased polyurethane rigid foams for thermal insulation. Care should be taken with reference to ozone depletion potential, marine eutrophication, and abiotic depletion potential because of the uncertainty related to their results. The methylene diphenyl diisocyanate and foam production process were identified as the major sources of impacts. Overall environmental superiority of biobased polyurethanes cannot always be claimed with respect to their fossil counterpart.

12.
Nanomaterials (Basel) ; 10(1)2019 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-31906228

RESUMEN

In this study we evaluated the effect of microwave vacuum plasma for the surface functionalization of graphitic fillers (graphite and graphene); we also showed the effect of the functionalization on the mechanical and electrical properties of epoxy composites. Optimized conditions of plasma treatment were defined to obtain high plasma density and increased surface hydrophilicity of the fillers, with high stability of functionalization over time and temperature. However, the extent of such treatments proved to be limited by the high temperatures involved in the curing process of the resin. The use of specific gas mixtures (He/O2) during functionalization and the use of a high surface filler (graphene) can partially limit these negative effects thanks to the higher thermal stability of the induced functionalization. As a consequence, mechanical tests on graphene filled epoxies showed limited improvements in flexural properties while electrical resistivity is slightly increased with a shift of the percolation threshold towards higher filler concentration.

13.
Materials (Basel) ; 12(1)2018 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-30586890

RESUMEN

The substitution of virgin resins by recycled ones is a worldwide tendency that is supported by the fluctuation of oil prices and the transition to a circular economy. Polymeric blends have been intensively studied because of their ability to provide tailored properties for particular applications. However, in their design phases, the issue of end-life re-use had not been well addressed, and now difficulties in their recycling are arising. In this study, we investigated the effect of three different compatibilizers: two chain extenders (CEs), (1) a styrene-acrylic oligomer (ESAo), and (2) methylene diphenyl diisocyanate (MDI) and an impact strength modifier, (3) an ethylene copolymer (EMAco), for the recycle of a post-industrial polycarbonate/polyethylene terephthalate (PC/PET) blend. The materials were prepared by reactive extrusion and characterized by intrinsic viscosity (IV) measurements, mechanical tests, differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy analysis (FTIR), and transmission electron microscopy (TEM). The introduction of each additive has been demonstrated to improve the compatibility between PET and PC in the post-industrial blend, leading to enhanced mechanical properties. The IV measurements increased to values that were comparable to the virgin material. In addition, CEs affected the crystallization of PET (as they reduced the degree of crystallinity), while EMAco acted as a nucleating agent. Morphological analysis enabled confirming the compatibilization effects induced by the tested additives.

14.
Des Monomers Polym ; 20(1): 547-563, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29491826

RESUMEN

In order to prepare thermally stable isosorbide-derived thermoplastic polyurethane, the synthesis of two new chiral exo-exo configured diols, prepared from isosorbide, and two types of diphenols (bisphenol A and thiodiphenol) was described. The synthesis conditions were optimized under conventional heating and microwave irradiations. To prove their suitability in polymerization, these monomers were successfully polymerized using 4,4'-diphenylmethane diisocyanate (MDI) and hexamethylene diisocyanate (HDI). Both monomers and polymers have been studied by NMR, FT-IR, TGA, DSC; intrinsic viscosity of polymers has also been determined. The results showed the effectiveness of the synthetic strategy proposed; moreover, a dramatic reduction of the reaction time and an important improvement of the monomers yield using microwave irradiation have been demonstrated. The monomers, as well as the polymers, showed excellent thermal stability both in air and nitrogen. It was also shown that the introduction of sulphur in the polyurethane backbone was effective in delaying the onset of degradation as well as the degradation rate.

15.
J Pept Sci ; 21(10): 786-95, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26358742

RESUMEN

The development of a biomimetic surface able to promote endothelialization is fundamental in the search for blood vessel substitutes that prevent the formation of thrombi or hyperplasia. This study aims at investigating the effect of functionalization of poly-ε-caprolactone or poly(L-lactic acid-co-ɛ-caprolactone) electrospun scaffolds with a photoreactive adhesive peptide. The designed peptide sequence contains four Gly-Arg-Gly-Asp-Ser-Pro motifs per chain and a p-azido-Phe residue at each terminus. Different peptide densities on the scaffold surface were obtained by simply modifying the peptide concentration used in pretreatment of the scaffold before UV irradiation. Scaffolds of poly-ε-caprolactone embedded with adhesive peptides were produced to assess the importance of peptide covalent grafting. Our results show that the scaffolds functionalized with photoreactive peptides enhance adhesion at 24 h with a dose-dependent effect and control the proliferation of human umbilical vein endothelial cells, whereas the inclusion of adhesive peptide in the electrospun matrices by embedding does not give satisfactory results.


Asunto(s)
Materiales Biocompatibles/química , Células Endoteliales de la Vena Umbilical Humana/citología , Oligopéptidos/química , Andamios del Tejido/química , Adhesión Celular/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Humanos
16.
PLoS One ; 10(9): e0137505, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26361004

RESUMEN

The design of hybrid poly-ε-caprolactone (PCL)-self-assembling peptides (SAPs) matrices represents a simple method for the surface functionalization of synthetic scaffolds, which is essential for cell compatibility. This study investigates the influence of increasing concentrations (2.5%, 5%, 10% and 15% w/w SAP compared to PCL) of three different SAPs on the physico-chemical/mechanical and biological properties of PCL fibers. We demonstrated that physico-chemical surface characteristics were slightly improved at increasing SAP concentrations: the fiber diameter increased; surface wettability increased with the first SAP addition (2.5%) and slightly less for the following ones; SAP-surface density increased but no change in the conformation was registered. These results could allow engineering matrices with structural characteristics and desired wettability according to the needs and the cell system used. The biological and mechanical characteristics of these scaffolds showed a particular trend at increasing SAP concentrations suggesting a prevailing correlation between cell behavior and mechanical features of the matrices. As compared with bare PCL, SAP enrichment increased the number of metabolic active h-osteoblast cells, fostered the expression of specific osteoblast-related mRNA transcripts, and guided calcium deposition, revealing the potential application of PCL-SAP scaffolds for the maintenance of osteoblast phenotype.


Asunto(s)
Osteoblastos/efectos de los fármacos , Péptidos/farmacología , Poliésteres/farmacología , Andamios del Tejido/química , Anciano , Calcio/metabolismo , Células Cultivadas , Humanos , Masculino , Osteoblastos/metabolismo , Péptidos/química , Poliésteres/química , ARN Mensajero/genética , ARN Mensajero/metabolismo
17.
Materials (Basel) ; 8(7): 4096-4117, 2015 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-28793427

RESUMEN

In this study electrospun nanofibers of partially sulfonated polyether ether ketone have been produced as a preliminary step for a possible development of composite proton exchange membranes for fuel cells. Response surface methodology has been employed for the modelling and optimization of the electrospinning process, using a Box-Behnken design. The investigation, based on a second order polynomial model, has been focused on the analysis of the effect of both process (voltage, tip-to-collector distance, flow rate) and material (sulfonation degree) variables on the mean fiber diameter. The final model has been verified by a series of statistical tests on the residuals and validated by a comparison procedure of samples at different sulfonation degrees, realized according to optimized conditions, for the production of homogeneous thin nanofibers.

18.
Bone ; 51(5): 851-9, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22926428

RESUMEN

Electrospun polycaprolactone (PCL) is able to support the adhesion and growth of h-osteoblasts and to delay their degradation rate to a greater extent with respect to other polyesters. The drawbacks linked to its employment in regenerative medicine arise from its hydrophobic nature and the lack of biochemical signals linked to it. This work reports on the attempt to add five different self-assembling (SA) peptides to PCL solutions before electrospinning. The hybrid scaffolds obtained had regular fibers (SEM analysis) whose diameters were similar to those of the extracellular matrix, more stable hydrophilic (contact angle measurement) surfaces, and an amorphous phase constrained by peptides (DSC analysis). They appeared to have a notable capacity to promote the h-osteoblast adhesion and differentiation process by increasing the gene expression of alkaline phosphatase, bone sialoprotein, and osteopontin. Adding an Arg-Gly-Asp (RGD) motif to a self-assembling sequence was found to enhance cell adhesion, while the same motif condensed with a scrambled sequence did not, indicating that there is a cooperative effect between RGD and 3D architecture created by the self-assembling peptides. The study demonstrates that self-assembling peptide scaffolds are still able to promote beneficial effects on h-osteoblasts even after they have been included in electrospun polycaprolactone. The possibility of linking biochemical messages to self-assembling peptides could lead the way to a 3D decoration of fibrous scaffolds.


Asunto(s)
Adhesión Celular/fisiología , Diferenciación Celular/fisiología , Osteoblastos/citología , Péptidos/química , Poliésteres/química , Andamios del Tejido/química , Rastreo Diferencial de Calorimetría , Microscopía Electrónica de Rastreo , Oligopéptidos/química , Péptidos/síntesis química , Espectroscopía Infrarroja por Transformada de Fourier , Ingeniería de Tejidos
19.
Acta Biomater ; 7(6): 2526-32, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21345384

RESUMEN

Structural, mechanical and biochemical properties have to be considered when searching for suitable extracellular matrix substitutes. Fibrous structures of synthetic or natural polymers have received increasing interest as three-dimensional scaffolds for tissue engineering applications as they can be easily produced by electrospinning with different topographical features by changing the process parameters. On the other hand, the nanobiotechnology approach suggests mimicking molecular architectures in nature through self-assembly. In particular, self-assembling peptide-based biomaterials have been successfully used as scaffolds for cell growth. In order to amalgamate these two strategies nanofibrous electrospun scaffolds of hybrid polymer were designed and obtained by mixing poly(ethylene oxide) and self-assembling peptides in aqueous solution. The results of in vitro osteoblast adhesion and proliferation assays on the electrospun scaffolds obtained using different self-assembling peptide sequences are discussed.


Asunto(s)
Desarrollo Óseo , Péptidos/química , Polietilenglicoles/química , Ingeniería de Tejidos , Secuencia de Aminoácidos , Células Cultivadas , Humanos , Masculino , Microscopía Electrónica de Rastreo , Persona de Mediana Edad , Datos de Secuencia Molecular
20.
Nanotechnology ; 19(28): 285707, 2008 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-21828741

RESUMEN

A multicomponent membrane based on polysulfone nanofibers and titanium dioxide nanoparticles is produced by the coupling of electrospinning and electrospraying techniques. The manufactured product can satisfy a number of conflicting requirements begetting its technical and functional versatility as well as the reliability of the process. As nanoparticle dispersion is a critical issue in nanoparticle technology, their distribution and morphology have been extensively studied before and after electrospraying, and process optimization has been carried out to obtain nanoparticles uniformly spread over electrospun nanofibers. These membranes have been proved to be a good candidate for supported catalysis due to the photocatalytic activity of TiO(2), tested for degradation of CEPS, a mustard agent simulant. At the same time, an effective improvement in filtering properties in terms of pressure drop has also been studied.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...