Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Asunto principal
Intervalo de año de publicación
1.
Front Plant Sci ; 14: 1114398, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37636102

RESUMEN

Hemp (Cannabis sativa L.) is a widely researched industrial crop with a variety of applications in the pharmaceutical, nutraceutical, food, cosmetic, textile, and materials industries. Although many of these applications are related to its chemical composition, the chemical diversity of the hemp metabolome has not been explored in detail and new metabolites with unknown properties are likely to be discovered. In the current study, we explored the chemical diversity of the hemp seed metabolome through an untargeted metabolomic study of 52 germplasm accessions to 1) identify new metabolites and 2) link the presence of biologically important molecules to specific accessions on which to focus on in future studies. Multivariate analysis of mass spectral data demonstrated large variability of the polar chemistry profile between accessions. Five main groups were annotated based on their similar metabolic fingerprints. The investigation also led to the discovery of a new compound and four structural analogues, belonging to a previously unknown chemical class in hemp seeds: cinnamic acid glycosyl sulphates. Although variability in the fatty acid profiles was not as marked as the polar components, some accessions had a higher yield of fatty acids, and variation in the ratio of linoleic acid to α-linolenic acid was also observed, with some varieties closer to 3:1 (reported as optimal for human nutrition). We found that that cinnamic acid amides and lignanamides, the main chemical classes of bioactive metabolites in hemp seed, were more concentrated in the Spanish accession Kongo Hanf (CAN58) and the French accession CAN37, while the Italian cultivar Eletta Campana (CAN48) demonstrated the greatest yield of fatty acids. Our results indicate that the high variability of bioactive and novel metabolites across the studied hemp seed accessions may influence claims associated with their commercialization and inform breeding programs in cultivar development.

2.
J Agric Food Chem ; 69(34): 9915-9923, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34425053

RESUMEN

The authentication of bamboo shoots found in the marketplace is complex because the chemical profile of processed and unprocessed material is different. During processing, heat derivatives of the potentially toxic cyanogenic glycoside taxiphyllin are produced. Here, we report the isolation and structure elucidation of the two major diarylbutenedinitrile derivatives, which are cis and trans isomers of the rare 2,3-bis(4-hydroxyphenyl)but-2-enedinitrile from a commercial extract of bamboo shoots. These compounds, absent in fresh bamboo shoots, were produced by boiling the shoots of Bambusa vulgaris and were associated with a decrease in levels of taxiphyllin. Furthermore, (E)-2,3-bis(4-hydroxyphenyl)but-2-enedinitrile was quantified in all 16 of the commercial products tested. Its abundance was found to be highly variable, ranging from 1 to 3 mg/g in preserved bamboo shoots and from 10 to 160 mg/mL in commercial aqueous extracts. Of the 15 authenticated bamboo samples tested for taxiphyllin, it was found only in the shoots of B. vulgaris and Gigantochloa verticillata, which represent two edible bamboo species. Our results indicate that diarylbutenedinitriles can be used as markers for the authentication of boil-processed bamboo shoots obtained from taxiphyllin-containing edible species and organs.


Asunto(s)
Bambusa , Glicósidos , Brotes de la Planta , Verduras
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA