Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Hepatol ; 78(5): 958-970, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36702177

RESUMEN

BACKGROUND & AIMS: Chronic coinfection with HBV and HDV leads to the most aggressive form of chronic viral hepatitis. Herein, we aimed to elucidate the molecular mechanisms underlying the widely reported observation that HDV interferes with HBV in most coinfected patients. METHODS: Patient liver tissues, primary human hepatocytes, HepaRG cells and human liver chimeric mice were used to analyze the effect of HDV on HBV using virological and RNA-sequencing analyses, as well as RNA synthesis, stability and association assays. RESULTS: Transcriptomic analyses in cell culture and mouse models of coinfection enabled us to define an HDV-induced signature, mainly composed of interferon (IFN)-stimulated genes (ISGs). We also provide evidence that ISGs are upregulated in chronically HDV/HBV-coinfected patients but not in cells that only express HDV antigen (HDAg). Inhibition of the hepatocyte IFN response partially rescued the levels of HBV parameters. We observed less HBV RNA synthesis upon HDV infection or HDV protein expression. Additionally, HDV infection or expression of HDAg alone specifically accelerated the decay of HBV RNA, and HDAg was associated with HBV RNAs. On the contrary, HDAg expression did not affect other viruses such as HCV or SARS-CoV-2. CONCLUSIONS: Our data indicate that HDV interferes with HBV through both IFN-dependent and IFN-independent mechanisms. Specifically, we uncover a new viral interference mechanism in which proteins of a satellite virus affect the RNA production of its helper virus. Exploiting these findings could pave the way to the development of new therapeutic strategies against HBV. IMPACT AND IMPLICATIONS: Although the molecular mechanisms remained unexplored, it has long been known that despite its dependency, HDV decreases HBV viremia in patients. Herein, using in vitro and in vivo models, we showed that HDV interferes with HBV through both IFN-dependent and IFN-independent mechanisms affecting HBV RNA metabolism, and we defined the HDV-induced modulation signature. The mechanisms we uncovered could pave the way for the development of new therapeutic strategies against HBV by mimicking and/or increasing the effect of HDAg on HBV RNA. Additionally, the HDV-induced modulation signature could potentially be correlated with responsiveness to IFN-α treatment, thereby helping to guide management of HBV/HDV-coinfected patients.


Asunto(s)
COVID-19 , Coinfección , Hepatitis B , Hepatitis D , Humanos , Ratones , Animales , Virus de la Hepatitis Delta/fisiología , Virus de la Hepatitis B/fisiología , Interferones , Antígenos de Hepatitis delta/metabolismo , Hepatitis D/complicaciones , Hepatitis B/complicaciones , Replicación Viral/fisiología , COVID-19/complicaciones , SARS-CoV-2/genética , ARN Viral/genética
2.
Mol Ther ; 30(12): 3601-3618, 2022 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-35810332

RESUMEN

AAV vectors are promising delivery tools for human gene therapy. However, broad tissue tropism and pre-existing immunity against natural serotypes limit their clinical use. We identified two AAV capsid variants, AAV2-THGTPAD and AAV2-NLPGSGD, by in vivo AAV2 peptide display library screening in a murine model of pressure overload-induced cardiac hypertrophy. Both variants showed significantly improved efficacy in in vivo cardiomyocyte transduction compared with the parental serotype AAV2 as indicated by a higher number of AAV vector episomes in the nucleus and significant improved transduction efficiency. Both variants also outcompeted the reference serotype AAV9 regarding cardiomyocyte tropism, reaching comparable cardiac transduction efficiencies accompanied with liver de-targeting and decreased transduction efficiency of non-cardiac cells. Capsid modification influenced immunogenicity as sera of mice treated with AAV2-THGTPAD and AAV2-NLPGSGD demonstrated a poor neutralization capacity for the parental serotype and the novel variants. In a therapeutic setting, using the long non-coding RNA H19 in low vector dose conditions, novel AAV variants mediated superior anti-hypertrophic effects and revealed a further improved target-to-noise ratio, i.e., cardiomyocyte tropism. In conclusion, AAV2-THGTPAD and AAV2-NLPGSGD are promising novel tools for cardiac-directed gene therapy outperforming AAV9 regarding the specificity and therapeutic efficiency of in vivo cardiomyocyte transduction.


Asunto(s)
Miocitos Cardíacos , ARN Largo no Codificante , Animales , Humanos , Ratones , Tropismo , Cápside
3.
EMBO Mol Med ; 13(4): e13392, 2021 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-33616280

RESUMEN

Gene therapy using recombinant adeno-associated virus (rAAV) vectors to treat blinding retinal dystrophies has become clinical reality. Therapeutically impactful targeting of photoreceptors still relies on subretinal vector delivery, which detaches the retina and harbours substantial risks of collateral damage, often without achieving widespread photoreceptor transduction. Herein, we report the development of novel engineered rAAV vectors that enable efficient targeting of photoreceptors via less invasive intravitreal administration. A unique in vivo selection procedure was performed, where an AAV2-based peptide-display library was intravenously administered in mice, followed by isolation of vector DNA from target cells after only 24 h. This stringent selection yielded novel vectors, termed AAV2.GL and AAV2.NN, which mediate widespread and high-level retinal transduction after intravitreal injection in mice, dogs and non-human primates. Importantly, both vectors efficiently transduce photoreceptors in human retinal explant cultures. As proof-of-concept, intravitreal Cnga3 delivery using AAV2.GL lead to cone-specific expression of Cnga3 protein and rescued photopic cone responses in the Cnga3-/- mouse model of achromatopsia. These novel rAAV vectors expand the clinical applicability of gene therapy for blinding human retinal dystrophies.


Asunto(s)
Defectos de la Visión Cromática , Dependovirus , Animales , Cápside , Defectos de la Visión Cromática/terapia , Dependovirus/genética , Perros , Terapia Genética , Vectores Genéticos , Ratones , Retina
4.
J Pharm Sci ; 109(1): 854-862, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31639391

RESUMEN

Recombinant adeno-associated virus (AAV) vectors have evolved as the most promising technology for gene therapy due to their good safety profile, high transduction efficacy, and long-term gene expression in non-dividing cells. AAV-based gene therapy holds great promise for treating genetic disorders like inherited blindness, muscular atrophy, or bleeding disorders. Multiple naturally occurring and engineered AAV serotypes exist, which differ in capsid sequence and as a consequence in cellular tropism. Individual AAV capsids differ in thermal stability and have a characteristic melting temperature (Tm), which enables serotype-specific discrimination of AAV vectors. Differential scanning fluorimetry (DSF) combined with a dye-like SYPRO Orange (SO-DSF), which binds to hydrophobic regions of unfolded proteins, has been successfully applied to determine the Tm of AAV capsids. Here, we present DSF measurement of intrinsic fluorescence signal (iDSF) as a simple alternative method for determination of AAV capsid Tm. The study demonstrates that DSF measurement of intrinsic fluorescence signal is a simple, accurate, and rapid alternative to SO-DSF, which enables characterization of AAV capsid stability with excellent precision and without the need of SO or any other dye.


Asunto(s)
Proteínas de la Cápside/metabolismo , Dependovirus/metabolismo , Fluorometría , Ensayos Analíticos de Alto Rendimiento , Proteínas de la Cápside/química , Dependovirus/clasificación , Dependovirus/genética , Colorantes Fluorescentes/química , Interacciones Hidrofóbicas e Hidrofílicas , Desnaturalización Proteica , Estabilidad Proteica , Desplegamiento Proteico , Factores de Tiempo , Temperatura de Transición , Flujo de Trabajo
5.
Sci Rep ; 9(1): 3631, 2019 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-30842485

RESUMEN

AAV vectors poorly transduce Dendritic cells (DC), a feature invoked to explain AAV's low immunogenicity. However, the reason for this non-permissiveness remained elusive. Here, we performed an in-depth analysis using human monocyte-derived immature DC (iDC) as model. iDC internalized AAV vectors of various serotypes, but even the most efficient serotype failed to transduce iDC above background. Since AAV vectors reached the cell nucleus, we hypothesized that AAV's intracellular processing occurs suboptimal. On this basis, we screened an AAV peptide display library for capsid variants more suitable for DC transduction and identified the I/VSS family which transduced DC with efficiencies of up to 38%. This property correlated with an improved vector uncoating. To determine the consequence of this novel feature for AAV's in vivo performance, we engineered one of the lead candidates to express a cytoplasmic form of ovalbumin, a highly immunogenic model antigen, and assayed transduction efficiency as well as immunogenicity. The capsid variant clearly outperformed the parental serotype in muscle transduction and in inducing antigen-specific humoral and T cell responses as well as anti-capsid CD8+ T cells. Hence, vector uncoating represents a major barrier hampering AAV vector-mediated transduction of DC and impacts on its use as vaccine platform.


Asunto(s)
Proteínas de la Cápside/inmunología , Cápside/inmunología , Células Dendríticas/inmunología , Dependovirus/inmunología , Vectores Genéticos/administración & dosificación , Vectores Genéticos/inmunología , Transducción Genética , Animales , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/virología , Células Dendríticas/virología , Dependovirus/genética , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL
6.
J Biol Phys ; 44(2): 181-194, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29656365

RESUMEN

Virus families have evolved different strategies for genome uncoating, which are also followed by recombinant vectors. Vectors derived from adeno-associated viruses (AAV) are considered as leading delivery tools for in vivo gene transfer, and in particular gene therapy. Using a combination of atomic force microscopy (AFM), biochemical experiments, and physical modeling, we investigated here the physical properties and stability of AAV vector particles. We first compared the morphological properties of AAV vectors derived from two different serotypes (AAV8 and AAV9). Furthermore, we triggered ssDNA uncoating by incubating vector particles to increasing controlled temperatures. Our analyses, performed at the single-particle level, indicate that genome release can occur in vitro via two alternative pathways: either the capsid remains intact and ejects linearly the ssDNA molecule, or the capsid is ruptured, leaving ssDNA in a compact entangled conformation. The analysis of the length distributions of ejected genomes further revealed a two-step ejection behavior. We propose a kinetic model aimed at quantitatively describing the evolution of capsids and genomes along the different pathways, as a function of time and temperature. This model allows quantifying the relative stability of AAV8 and AAV9 particles.


Asunto(s)
Cápside/metabolismo , Dependovirus/genética , Vectores Genéticos/genética , Vectores Genéticos/metabolismo , Genómica , Termodinámica
7.
PLoS Pathog ; 13(9): e1006610, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28957419

RESUMEN

IFITMs are broad antiviral factors that block incoming virions in endosomal vesicles, protecting target cells from infection. In the case of HIV-1, we and others reported the existence of an additional antiviral mechanism through which IFITMs lead to the production of virions of reduced infectivity. However, whether this second mechanism of inhibition is unique to HIV or extends to other viruses is currently unknown. To address this question, we have analyzed the susceptibility of a broad spectrum of viruses to the negative imprinting of the virion particles infectivity by IFITMs. The results we have gathered indicate that this second antiviral property of IFITMs extends well beyond HIV and we were able to identify viruses susceptible to the three IFITMs altogether (HIV-1, SIV, MLV, MPMV, VSV, MeV, EBOV, WNV), as well as viruses that displayed a member-specific susceptibility (EBV, DUGV), or were resistant to all IFITMs (HCV, RVFV, MOPV, AAV). The swapping of genetic elements between resistant and susceptible viruses allowed us to point to specificities in the viral mode of assembly, rather than glycoproteins as dominant factors of susceptibility. However, we also show that, contrarily to X4-, R5-tropic HIV-1 envelopes confer resistance against IFITM3, suggesting that viral receptors add an additional layer of complexity in the IFITMs-HIV interplay. Lastly, we show that the overall antiviral effects ascribed to IFITMs during spreading infections, are the result of a bimodal inhibition in which IFITMs act both by protecting target cells from incoming viruses and in driving the production of virions of reduced infectivity. Overall, our study reports for the first time that the negative imprinting of the virion particles infectivity is a conserved antiviral property of IFITMs and establishes IFITMs as a paradigm of restriction factor capable of interfering with two distinct phases of a virus life cycle.


Asunto(s)
Antígenos de Diferenciación/metabolismo , Virión , Replicación Viral , Línea Celular , VIH-1/fisiología , Interacciones Huésped-Patógeno , Humanos , Internalización del Virus
8.
Med Sci (Paris) ; 32(2): 167-74, 2016 Feb.
Artículo en Francés | MEDLINE | ID: mdl-26936174

RESUMEN

Recombinant AAV vectors (rAAV) are considered as very efficient tools for in vivo gene transfer. Accordingly, several preclinical and clinical gene therapy trials use these vectors to treat inherited and acquired diseases. rAAV vectors possess the capacity to persist for a long term in the transduced tissue in a transcriptionally active, extra-chromosomal (episomal) form. However, many studies have shown that a significant fraction of the rAAV genomes can also nonspecifically integrate into the host cell genome thus raising the possibility of insertional mutagenesis events. This review summarizes the current knowledge on integration of wild type and rAAV genomes and highlights the major questions which remain unresolved.


Asunto(s)
Dependovirus/genética , Vectores Genéticos/genética , Mutagénesis Insercional , Animales , ADN Viral/genética , Técnicas de Transferencia de Gen , Terapia Genética/métodos , Genoma Viral/fisiología , Humanos , Mutagénesis Insercional/genética , Mutagénesis Insercional/métodos , Recombinación Genética , Integración Viral/genética
11.
Virologie (Montrouge) ; 17(5): 343-353, 2013 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31910590

RESUMEN

Among the variety of viral vectors, those derived from the human parvovirus Adeno-Associated Virus (AAV) have emerged as a very efficient tool for in vivo gene transfer into a variety of tissues and animal species during the two last decades. The relative simplicity of the organization of the AAV genome and the non-pathogenic property of the parental AAV has greatly contributed to the use of this viral vector among the gene transfer community. However, the limited knowledge of the wild type (wt) virus compared to other viral vectors has required considerable efforts to gain insight into wt AAV biology in order to improve the AAV vector system for therapy. This review will summarize the most important features of both wt and recombinant AAV to show how the increased understanding of the biology of the virus has enabled AAV vectors to lead the in vivo gene transfer field.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...