Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Infect Dis Now ; 54(3): 104885, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38484980

RESUMEN

PURPOSE: Aspiration pneumonia (AP) has significant incidence and impact on mortality. However, data about clinical diagnosis criteria are scarce. We aimed to evaluate according to predefined criteria the prevalence of true AP and its impact on antibiotic stewardship. METHODS: Retrospective study of patients whose main diagnosis was AP hospitalized at Amiens University Hospital in 2018. We first defined diagnostic criteria of certainty for pneumonia and aspiration. AP was then classified according to degree of certainty. RESULTS: Among 862 cases of AP, its diagnosis was certain, likely, probably in excess, certainly in excess or absent in 2 % (n = 17), 3 % (n = 26), 50.5 % (n = 433), 23.1 % (n = 198) and 21.4 % (n = 183) respectively. Irrelevant use of amoxicillin-clavulanic acid and metronidazole was found in 27 % and 13 % of cases, respectively. CONCLUSIONS: The diagnosis of AP is frequently excessive, and diagnostic tools are urgently needed to improve antibiotic stewardship.


Asunto(s)
Antibacterianos , Neumonía por Aspiración , Humanos , Antibacterianos/uso terapéutico , Estudios Retrospectivos , Prevalencia , Neumonía por Aspiración/tratamiento farmacológico , Neumonía por Aspiración/epidemiología , Neumonía por Aspiración/diagnóstico , Prescripciones
2.
Sci Total Environ ; 919: 170692, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38325491

RESUMEN

This study aimed to assess the potential impact of long-term chronic exposure (69 years) to naturally-occurring radionuclides (RNs) and heavy metals on microbial communities in sediment from a stream flowing through a watershed impacted by an ancient mining site (Rophin, France). Four sediment samples were collected along a radioactivity gradient (for 238U368 to 1710 Bq.Kg-1) characterized for the presence of the bioavailable fractions of radionuclides (226Ra, 210Po), and trace metal elements (Th, U, As, Pb, Cu, Zn, Fe). Results revealed that the available fraction of contaminants was significant although it varied considerably from one element to another (0 % for As and Th, 5-59 % for U). Nonetheless, microbial communities appeared significantly affected by such chronic exposure to (radio)toxicities. Several microbial functions carried by bacteria and related with carbon and nitrogen cycling have been impaired. The high values of fungal diversity and richness observed with increasing downstream contamination (H' = 4.4 and Chao1 = 863) suggest that the community had likely shifted toward a more adapted/tolerant one as evidenced, for example, by the presence of the species Thelephora sp. and Tomentella sp. The bacterial composition was also affected by the contaminants with enrichment in Myxococcales, Acidovorax or Nostocales at the most contaminated points. Changes in microbial composition and functional structure were directly related to radionuclide and heavy metal contaminations, but also to organic matter which also significantly affected, directly or indirectly, bacterial and fungal compositions. Although it was not possible to distinguish the specific effects of RNs from heavy metals on microbial communities, it is essential to continue studies considering the available fraction of elements, which is the only one able to interact with microorganisms.


Asunto(s)
Metales Pesados , Microbiota , Metales Pesados/toxicidad , Metales Pesados/análisis , Bacterias , Radioisótopos/análisis , Francia
3.
Sci Total Environ ; 912: 169567, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38145686

RESUMEN

The recent characterization of antibiotic resistance genes (ARGs) in clouds evidenced that the atmosphere actively partakes in the global spreading of antibiotic resistance worldwide. Indeed, the outdoor atmosphere continuously receives large quantities of particles of biological origins, emitted from both anthropogenic or natural sources at the near Earth's surface. Nonetheless, our understanding of the composition of the atmospheric resistome, especially at mid-altitude (i.e. above 1000 m a.s.l.), remains largely limited. The atmosphere is vast and highly dynamic, so that the diversity and abundance of ARGs are expected to fluctuate both spatially and temporally. In this work, the abundance and diversity of ARGs were assessed in atmospheric aerosol samples collected weekly between July 2016 and August 2017 at the mountain site of puy de Dôme (1465 m a.s.l., central France). Our results evidence the presence of 33 different subtypes of ARGs in atmospheric aerosols, out of 34 assessed, whose total concentration fluctuated seasonally from 59 to 1.1 × 105 copies m-3 of air. These were heavily dominated by genes from the quinolone resistance family, notably the qepA gene encoding efflux pump mechanisms, which represented >95 % of total ARGs concentration. Its abundance positively correlated with that of bacteria affiliated with the genera Kineococcus, Neorhizobium, Devosia or Massilia, ubiquitous in soils. This, along with the high abundance of Sphingomonas species, points toward a large contribution of natural sources to the airborne ARGs. Nonetheless, the increased contribution of macrolide resistance (notably the erm35 gene) during winter suggests a sporadic diffusion of ARGs from human activities. Our observations depict the atmosphere as an important vector of ARGs from terrestrial sources. Therefore, monitoring ARGs in airborne microorganisms appears necessary to fully understand the dynamics of antimicrobial resistances in the environment and mitigate the threats they may represent.


Asunto(s)
Antibacterianos , Farmacorresistencia Bacteriana , Humanos , Antibacterianos/farmacología , Farmacorresistencia Bacteriana/genética , Macrólidos , Genes Bacterianos , Francia , Aerosoles
4.
Microorganisms ; 11(7)2023 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-37512969

RESUMEN

Manure spreading from farm animals can release antibiotic-resistant bacteria (ARB) carrying antimicrobial resistance genes (ARGs) into the air, posing a potential threat to human and animal health due to the intensive use of antibiotics in the livestock industry. This study analyzed the effect of different manure types and spreading methods on airborne bacterial emissions and antibiotic resistance genes in a controlled setting. Cow, poultry manure, and pig slurry were spread in a confined environment using two types of spreaders (splash plate and dribble bar), and the resulting emissions were collected before, during, and after spreading using high-volume air samplers coupled to a particle counter. Total bacteria, fecal indicators, and a total of 38 different subtypes of ARGs were further quantified by qPCR. Spreading poultry manure resulted in the highest emission rates of total bacteria (1011 16S gene copies/kg manure spread), Archaea (106 16S gene copies/kg manure), Enterococcus (105 16S gene copies/kg manure), and E. coli (104 16S gene copies/kg manure), followed by cow manure and pig slurry with splash plates and the dribble bar. Manure spreading was associated with the highest rates of airborne aminoglycoside genes for cow and poultry (106 gene copies/kg manure), followed by pig slurry (104 gene copies/kg manure). This study shows that the type of manure and spreading equipment can affect the emission rates of airborne bacteria, and ARGs.

5.
Front Microbiol ; 14: 1186847, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37260685

RESUMEN

The atmosphere is an integral component of the Earth's microbiome. Abundance, viability, and diversity of microorganisms circulating in the air are determined by various factors including environmental physical variables and intrinsic and biological properties of microbes, all ranging over large scales. The aeromicrobiome is thus poorly understood and difficult to predict due to the high heterogeneity of the airborne microorganisms and their properties, spatially and temporally. The atmosphere acts as a highly selective dispersion means on large scales for microbial cells, exposing them to a multitude of physical and chemical atmospheric processes. We provide here a brief critical review of the current knowledge and propose future research directions aiming at improving our comprehension of the atmosphere as a biome.

6.
Sci Total Environ ; 865: 161264, 2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36587700

RESUMEN

Antibiotic resistance in bacteria is becoming a major sanitary concern worldwide. The extensive use of large quantities of antibiotics to sustain human activity has led to the rapid acquisition and maintenance of antibiotic resistant genes (ARGs) in bacteria and to their spread into the environment. Eventually, these can be disseminated over long distances by atmospheric transport. Here, we assessed the presence of ARGs in clouds as an indicator of long-distance travel potential of antibiotic resistance in the atmosphere. We hypothesized that a variety of ARGs can reach the altitude of clouds mainly located within the free troposphere. Once incorporated in the atmosphere, they are efficiently transported and their respective concentrations should differ depending on the sources and the geographical origin of the air masses. We deployed high-flow rate impingers and collected twelve clouds between September 2019 and October 2021 at the meteorological station of the puy de Dôme summit (1465 m a.s.l., France). Total airborne bacteria concentration was assessed by flow cytometry, and ARGs subtypes of the main families of antibiotic resistance (quinolone, sulfonamide, tetracycline; glycopeptide, aminoglycoside, ß-lactamase, macrolide) including one mobile genetic element (transposase) were quantified by qPCR. Our results indicate the presence of 29 different ARGs' subtypes at concentrations ranging from 1.01 × 103 to 1.61 × 104 copies m-3 of air. Clear distinctions could be observed between clouds in air masses transported over marine areas (Atlantic Ocean) and clouds influenced by continental surfaces. Specifically, quinolones (mostly qepA) resistance genes were prevalent in marine clouds (54 % of the total ARGs on average), whereas higher contributions of sulfonamide, tetracycline; glycopeptide, ß-lactamase and macrolide were found in continental clouds. This study constitutes the first evidence for the presence of microbial ARGs in clouds at concentrations comparable to other natural environments. This highlights the atmosphere as routes for the dissemination of ARGs at large scale.


Asunto(s)
Antibacterianos , Quinolonas , Humanos , Antibacterianos/farmacología , Antibacterianos/análisis , Genes Bacterianos , Tetraciclina/análisis , Bacterias/genética , Sulfanilamida , Farmacorresistencia Microbiana/genética , beta-Lactamasas/genética , Francia
7.
Antibiotics (Basel) ; 11(7)2022 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-35884228

RESUMEN

Antimicrobial resistance (AMR) is continuing to grow across the world. Though often thought of as a mostly public health issue, AMR is also a major agricultural and environmental problem. As such, many researchers refer to it as the preeminent One Health issue. Aerial transport of antimicrobial-resistant bacteria via bioaerosols is still poorly understood. Recent work has highlighted the presence of antibiotic resistance genes in bioaerosols. Emissions of AMR bacteria and genes have been detected from various sources, including wastewater treatment plants, hospitals, and agricultural practices; however, their impacts on the broader environment are poorly understood. Contextualizing the roles of bioaerosols in the dissemination of AMR necessitates a multidisciplinary approach. Environmental factors, industrial and medical practices, as well as ecological principles influence the aerial dissemination of resistant bacteria. This article introduces an ongoing project assessing the presence and fate of AMR in bioaerosols across Canada. Its various sub-studies include the assessment of the emissions of antibiotic resistance genes from many agricultural practices, their long-distance transport, new integrative methods of assessment, and the creation of dissemination models over short and long distances. Results from sub-studies are beginning to be published. Consequently, this paper explains the background behind the development of the various sub-studies and highlight their shared aspects.

8.
FEMS Microbiol Ecol ; 97(11)2021 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-34734249

RESUMEN

Bacteria circulate in the atmosphere, through clouds and precipitation to surface ecosystems. Here, we conducted a coordinated study of bacteria assemblages in clouds and precipitation at two sites distant of ∼800 m in elevation in a rural vegetated area around puy de Dôme Mountain, France, and analysed them in regard to meteorological, chemical and air masses' history data. In both clouds and precipitation, bacteria generally associated with vegetation or soil dominated. Elevated ATP-to-cell ratio in clouds compared with precipitation suggested a higher proportion of viable cells and/or specific biological processes. The increase of bacterial cell concentration from clouds to precipitation indicated strong below-cloud scavenging. Using ions as tracers, we derive that 0.2 to 25.5% of the 1.1 × 107 to 6.6 × 108 bacteria cell/m2/h1 deposited with precipitation originated from the source clouds. Yet, the relative species richness decreased with the proportion of inputs from clouds, pointing them as sources of distant microbial diversity. Biodiversity profiles, thus, differed between clouds and precipitation in relation with distant/local influencing sources, and potentially with bacterial phenotypic traits. Notably Undibacterium, Bacillus and Staphylococcus were more represented in clouds, while epiphytic bacteria such as Massilia, Sphingomonas, Rhodococcus and Pseudomonas were enriched in precipitation.


Asunto(s)
Bacterias , Ecosistema , Atmósfera , Biodiversidad , Biomasa
9.
J Hazard Mater ; 420: 126651, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34329075

RESUMEN

The present study investigates the individual degrading behavior of bacterial strains isolated from glyphosate-degrading stream biofilms. In this aim, biofilms were subjected to enrichment experiments using glyphosate or its metabolite AMPA (aminomethyl phosphonic acid) as the sole phosphorus source. Five bacterial strains were isolated and taxonomically affiliated to Ensifer sp. CNII15, Acidovorax sp. CNI26, Agrobacterium tumefaciens CNI28, Novosphingobium sp. CNI35 and Ochrobactrum pituitosum CNI52. All strains were capable of completely dissipating glyphosate after 125-400 h and AMPA after 30-120 h, except for Ensifer sp. CNII15 that was not able to dissipate glyphosate but entirely dissipated AMPA after 200 h. AMPA dissipation was overall faster than glyphosate dissipation. The five strains degraded AMPA completely since formaldehyde and/or glycine accumulation was observed. During glyphosate degradation, the strain CNI26 used the C-P lyase degradation pathway since sarcosine was quantitatively produced, and C-P lyase gene expression was enhanced 30× compared to the control treatment. However, strains CNI28, CNI35 and CNI52 accumulated both formaldehyde and glycine after glyphosate transformation suggesting that both C-P lyase and/or glyphosate oxidase degradation pathways took place. Our study shows different and complementary glyphosate degradation pathways for bacteria co-existing in stream biofilms.


Asunto(s)
Herbicidas , Ríos , Bacterias , Biopelículas , Glicina/análogos & derivados , Ochrobactrum , Glifosato
10.
Sci Total Environ ; 648: 1371-1383, 2019 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-30340282

RESUMEN

Leaf litter decomposition is a key mechanism in headwater streams, allowing the transfer of nutrients and energy into the entire food web. However, chemical contamination resulting from human activity may exert a high pressure on the process, possibly threatening the structure of heterotrophic microbial communities and their decomposition abilities. In this study, the rates of microbial Alnus glutinosa (Alnus) leaf decay were assessed in six French watersheds displaying different land use (agricultural, urbanized, forested) and over four seasons (spring, summer, autumn, winter). In addition, for each watershed at each sampling time, both upstream (less-contaminated) and downstream (more-contaminated) sections were monitored. Toxicities (estimated as toxic units) predicted separately for pesticides and pharmaceuticals as well as environmental parameters (including nutrient levels) were related to microbial decay rates corrected for temperature and a range of fungal and bacterial community endpoints, including biomass, structure, and activity (extracellular ligninolytic and cellulolytic enzymatic activities). Results showed that agricultural and urbanized watersheds were more contaminated for nutrients and xenobiotics (higher pesticides and pharmaceuticals predicted toxicity) than forested watersheds. However, Alnus decay rates were higher in agricultural and urbanized watersheds, suggesting compensatory effects of nutrients over xenobiotics. Conversely, fungal biomass in leaves was 2-fold and 1.4-fold smaller in urbanized and agricultural watersheds than in the forested watersheds, respectively, which was mostly related to pesticide toxicity. However, no clear pattern was observed for extracellular enzymatic activities except that ß-glucosidase activity positively correlated with Alnus decay rates. Together, these results highlight microbial communities being more efficient for leaf decomposition in polluted watersheds than in less contaminated ones, which is probably explained by changes in microbial community structure. Overall, our study showed that realistic chemical contamination in stream ecosystems may affect the biomass of Alnus-associated microbial communities but that these communities can adapt themselves to xenobiotics and maintain ecosystem functions.


Asunto(s)
Agricultura , Alnus , Ciudades , Agricultura Forestal , Hojas de la Planta , Contaminantes Químicos del Agua/análisis , Alnus/microbiología , Biodegradación Ambiental , Francia , Hojas de la Planta/microbiología , Ríos , Estaciones del Año
11.
Front Microbiol ; 9: 2437, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30386312

RESUMEN

Global contamination of streams by a large variety of compounds, such as nutrients and pesticides, may exert a high pressure on aquatic organisms, including microbial communities and their activity of organic matter decomposition. In this study, we assessed the potential interaction between nutrients and a fungicide and herbicide [tebuconazole (TBZ) and S-metolachlor (S-Met), respectively] at realistic environmental concentrations on the structure (biomass, diversity) and decomposition activity of fungal and bacterial communities (leaf decay rates, extracellular enzymatic activities) associated with Alnus glutinosa (Alnus) leaves. A 40-day microcosm experiment was used to combine two nutrient conditions (mesotrophic and eutrophic) with four pesticide treatments at a nominal concentrations of 15 µg L-1 (control, TBZ and S-Met, alone or mixed) following a 2 × 4 full factorial design. We also investigated resulting indirect effects on Gammarus fossarum feeding rates using leaves previously exposed to each of the treatments described above. Results showed interactive effects between nutrients and pesticides, only when nutrient (i.e., nitrogen and phosphorus) concentrations were the highest (eutrophic condition). Specifically, slight decreases in Alnus leaf decomposition rates were observed in channels exposed to TBZ (0.01119 days-1) and S-Met (0.01139 days-1) than in control ones (0.01334 days-1) that can partially be explained by changes in the structure of leaf-associated microbial communities. However, exposition to both TBZ and S-Met in mixture (MIX) led to comparable decay rates to those exposed to the pesticides alone (0.01048 days-1), suggesting no interaction between these two compounds on microbial decomposition. Moreover, stimulation in ligninolytic activities (laccase and phenol oxidase) was observed in presence of the fungicide, possibly highlighting detoxification mechanisms employed by microbes. Such stimulation was not observed for laccase activity exposed to the MIX, suggesting antagonistic interaction of these two compounds on the ability of microbial communities to cope with stress by xenobiotics. Besides, no effects of the treatments were observed on leaf palatability for macroinvertebrates. Overall, the present study highlights that complex interactions between nutrients and xenobiotics in streams and resulting from global change can negatively affect microbial communities associated with leaf litter, although effects on higher trophic-level organisms remains unclear.

12.
Front Microbiol ; 9: 3167, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30619225

RESUMEN

Nicosulfuron is a selective herbicide belonging to the sulfonylurea family, commonly applied on maize crops. Its worldwide use results in widespread presence as a contaminant in surface streams and ground-waters. In this study, we isolated, for the first time, the Plectosphaerella cucumerina AR1 nicosulfuron-degrading fungal strain, a new record from Alnus leaf litter submerged in freshwater. The degradation of nicosulfuron by P. cucumerina AR1 was achieved by a co-metabolism process and followed a first-order model dissipation. Biodegradation kinetics analysis indicated that, in planktonic lifestyle, nicosulfuron degradation by this strain was glucose concentration dependent, with a maximum specific degradation rate of 1 g/L in glucose. When grown on natural substrata (leaf or wood) as the sole carbon sources, the Plectosphaerella cucumerina AR1 developed as a well-established biofilm in 10 days. After addition of nicosulfuron in the medium, the biofilms became thicker, with rising mycelium, after 10 days for leaves and 21 days for wood. Similar biofilm development was observed in the absence of herbicide. These fungal biofilms still conserve the nicosulfuron degradation capacity, using the same pathway as that observed with planktonic lifestyle as evidenced by LC-MS analyses. This pathway involved first the hydrolysis of the nicosulfuron sulfonylurea bridge, leading to the production of two major metabolites: 2-amino-4,6-dimethoxypyrimidine (ADMP) and 2-(aminosulfonyl)-N,N-dimethyl-3-pyridinecarboxamide (ASDM). One minor metabolite, identified as 2-(1-(4,6-dimethoxy-pyrimidin-2-yl)-ureido)-N,N-dimethyl-nicotinamide (N3), derived from the cleavage of the C-S bond of the sulfonylurea bridge and contraction by elimination of sulfur dioxide. A last metabolite (N4), detected in trace amount, was assigned to 2-(4,6-dimethoxy-pyrimidin-2-yl)-N,N-dimethyl-nicotinamide (N4), resulting from the hydrolysis of the N3 urea function. Although fungal growth was unaffected by nicosulfuron, its laccase activity was significantly impaired regardless of lifestyle. Leaf and wood surfaces being good substrata for biofilm development in rivers, P. cucumerina AR1 strain could thus have potential as an efficient candidate for the development of methods aiming to reduce contamination by nicosulfuron in aquatic environments.

13.
Environ Sci Pollut Res Int ; 24(4): 3664-3674, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27885582

RESUMEN

Leaf microbial communities possess a large panel of enzymes permitting the breakdown of leaf polymers as well as the transformation of organic xenobiotic compounds present in stream waters. This study aims to assess the potential of leaf microbial communities, exhibiting different exposure histories to pesticides (upstream versus downstream), to biotransform three maize herbicides (mesotrione, S-metolachlor, and nicosulfuron) in single and cocktail molecule exposures. The results showed a high dissipation of nicosulfuron (sulfonylurea herbicide) (from 29.1 ± 10.8% to 66 ± 16.2%, day 40) in both single and cocktail exposures, respectively, but not of mesotrione and S-metolachlor. The formation of nicosulfuron metabolites such as ASDM (2-(aminosulfonyl)-N,N-dimethyl-3-pyridinecarboxamide) and ADMP (2-amino-4,6-dimethoxypyrimidine) and the weak sorption (<0.4%) on the leaf matrix confirmed the transformation of this molecule by leaf microorganisms. In addition, the downstream communities showed a greater ability to transform nicosulfuron than the upstream communities suggesting that the exposure history to pesticides is an important parameter and can enhance the biotransformation potential of leaf microorganisms. After 40-day single exposure to nicosulfuron, the downstream communities were also those experiencing the greatest shifts in fungal and bacterial community diversity suggesting a potential adaptation of microorganisms to this herbicide. Our study emphasizes the importance of leaf microbial communities for herbicide biotransformation in polluted stream ecosystems where fungi could play a crucial role.


Asunto(s)
Biotransformación , Herbicidas/metabolismo , Microbiología del Agua , Zea mays/metabolismo , Hojas de la Planta/metabolismo , Agua , Zea mays/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...