Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 118(30)2021 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-34282005

RESUMEN

With humanity facing an unprecedented climate crisis, the conservation of tropical forests has never been so important - their vast terrestrial carbon stocks can be turned into emissions by climatic and human disturbances. However, the duration of these effects is poorly understood, and it is unclear whether impacts are amplified in forests with a history of previous human disturbance. Here, we focus on the Amazonian epicenter of the 2015-16 El Niño, a region that encompasses 1.2% of the Brazilian Amazon. We quantify, at high temporal resolution, the impacts of an extreme El Niño (EN) drought and extensive forest fires on plant mortality and carbon loss in undisturbed and human-modified forests. Mortality remained higher than pre-El Niño levels for 36 mo in EN-drought-affected forests and for 30 mo in EN-fire-affected forests. In EN-fire-affected forests, human disturbance significantly increased plant mortality. Our investigation of the ecological and physiological predictors of tree mortality showed that trees with lower wood density, bark thickness and leaf nitrogen content, as well as those that experienced greater fire intensity, were more vulnerable. Across the region, the 2015-16 El Niño led to the death of an estimated 2.5 ± 0.3 billion stems, resulting in emissions of 495 ± 94 Tg CO2 Three years after the El Niño, plant growth and recruitment had offset only 37% of emissions. Our results show that limiting forest disturbance will not only help maintain carbon stocks, but will also maximize the resistance of Amazonian forests if fires do occur.


Asunto(s)
Ciclo del Carbono , Sequías , El Niño Oscilación del Sur , Agricultura Forestal/estadística & datos numéricos , Fenómenos Fisiológicos de las Plantas , Árboles/crecimiento & desarrollo , Incendios Forestales , Brasil , Bosques , Humanos
2.
Mar Pollut Bull ; 138: 235-240, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30660268

RESUMEN

Plastic has become abundant in the oceans and proved to be a threat to marine and coastal fauna. In this study, we present the first record of synthetic debris ingested by the shorebird American Oystercatcher (Haematopus palliatus) in Brazil. We collected 24 stomach contents from October 2007 to October 2015 and 58% were juveniles. Synthetic materials were found in 100% of stomachs. Used plastic fragments and plastic pellets were the most frequent items, beige and white were more common colors. Synthetic material may be unintentionally ingested directly through substrate consumption or indirectly through prey consumption. Hence, debris ingestion may be common, representing an impact to coastal birds. Based on our results, we hope to highlight the need for public policies to reduce the disposal of synthetic debris in the oceans and beaches.


Asunto(s)
Charadriiformes , Exposición Dietética/análisis , Contenido Digestivo/química , Residuos/análisis , Animales , Brasil , Monitoreo del Ambiente , Plásticos/análisis
3.
Artículo en Inglés | MEDLINE | ID: mdl-30297469

RESUMEN

Wildfires produce substantial CO2 emissions in the humid tropics during El Niño-mediated extreme droughts, and these emissions are expected to increase in coming decades. Immediate carbon emissions from uncontrolled wildfires in human-modified tropical forests can be considerable owing to high necromass fuel loads. Yet, data on necromass combustion during wildfires are severely lacking. Here, we evaluated necromass carbon stocks before and after the 2015-2016 El Niño in Amazonian forests distributed along a gradient of prior human disturbance. We then used Landsat-derived burn scars to extrapolate regional immediate wildfire CO2 emissions during the 2015-2016 El Niño. Before the El Niño, necromass stocks varied significantly with respect to prior disturbance and were largest in undisturbed primary forests (30.2 ± 2.1 Mg ha-1, mean ± s.e.) and smallest in secondary forests (15.6 ± 3.0 Mg ha-1). However, neither prior disturbance nor our proxy of fire intensity (median char height) explained necromass losses due to wildfires. In our 6.5 million hectare (6.5 Mha) study region, almost 1 Mha of primary (disturbed and undisturbed) and 20 000 ha of secondary forest burned during the 2015-2016 El Niño. Covering less than 0.2% of Brazilian Amazonia, these wildfires resulted in expected immediate CO2 emissions of approximately 30 Tg, three to four times greater than comparable estimates from global fire emissions databases. Uncontrolled understorey wildfires in humid tropical forests during extreme droughts are a large and poorly quantified source of CO2 emissions.This article is part of a discussion meeting issue 'The impact of the 2015/2016 El Niño on the terrestrial tropical carbon cycle: patterns, mechanisms and implications'.


Asunto(s)
Ciclo del Carbono , Dióxido de Carbono/análisis , Gases de Efecto Invernadero/análisis , Bosque Lluvioso , Clima Tropical , Incendios Forestales , Brasil , Sequías , Tecnología de Sensores Remotos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...