Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Toxicol ; 37(11): 2683-2691, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35920046

RESUMEN

Microcystins (MC) are hepatotoxic for organisms. Liver MC accumulation and structural change are intensely studied, but the functional hepatic enzymes and energy metabolism have received little attention. This study investigated the liver and hepatocyte structures and the activity of key hepatic functional enzymes with emphasis on energetic metabolism changes after subchronic fish exposure to cyanobacterial crude extract (CE) containing MC. The Neotropical erythrinid fish, Hoplias malabaricus, were exposed intraperitoneally to CE containing 100 µg MC-LR eq kg-1 for 30 days and, thereafter, the plasma, liver, and white muscle was sampled for analyses. Liver tissue lost cellular structure organization showing round hepatocytes, hyperemia, and biliary duct obstruction. At the ultrastructural level, the mitochondria and the endoplasmic reticulum exhibited disorganization. Direct and total bilirubin increased in plasma. In the liver, the activity of acid phosphatase (ACP) increased, and the aspartate aminotransferase (AST) decreased; AST increased in plasma. Alkaline phosphatase (ALP) and alanine aminotransferase (ALT) were unchanged in the liver, muscle, and plasma. Glycogen stores and the energetic metabolites as glucose, lactate, and pyruvate decrease in the liver; pyruvate decreased in plasma and lactate decreased in muscle. Ammonia levels increased and protein concentration decreased in plasma. CE alters liver morphology by causing hepatocyte intracellular disorder, obstructive cholestasis, and dysfunction in the activity of key liver enzymes. The increasing energy demand implies glucose mobilization and metabolic adjustments maintaining protein preservation and lipid recruitment to supply the needs for detoxification allowing fish survival.


Asunto(s)
Characiformes , Cianobacterias , Hepatopatías , Fosfatasa Ácida/metabolismo , Alanina Transaminasa/metabolismo , Fosfatasa Alcalina/metabolismo , Amoníaco , Animales , Aspartato Aminotransferasas/metabolismo , Bilirrubina/metabolismo , Mezclas Complejas/metabolismo , Mezclas Complejas/toxicidad , Cianobacterias/metabolismo , Glucosa/metabolismo , Glucógeno/metabolismo , Lactatos , Lípidos , Hígado/metabolismo , Hepatopatías/metabolismo , Microcistinas/metabolismo , Microcistinas/toxicidad , Piruvatos/metabolismo
2.
Ecotoxicology ; 27(2): 188-197, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29297132

RESUMEN

The effects of cypermethrin-based insecticide (CBI), commonly used in aquaculture and agriculture, were evaluated in matrinxa (Brycon amazonicus) exposed to sub-lethal concentration (20% of LC50) for 96 h. Physiological and biochemical effects were studied through biomarkers: lipid peroxidation (LPO), glutathione (GSH), and ascorbic acid concentrations; superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and glucose-6-phosphate dehydrogenase (G6PDH) assays in the liver and gills. Besides, ions Na+, Cl-, and K+; protein and glucose concentrations were measured in the plasma. Red blood cells count (RBC), hemoglobin concentration (Hb), hematocrit (Ht), and hematimetric parameters were evaluated in the total blood. The NKA (Na+ /K+ ATPase) activity was assayed in the gills. The histopathological effects of CBI were also investigated in the gills. The liver and gill LPO increased 62 and 100%, respectively. The tripeptide GSH concentration reduced in the liver and increased in the gill of exposed fish. The SOD and CAT activities increased in the liver, whereas CAT reduced in the gill. Liver also presented an increase in G6PDH activity. Plasma Na+ and Cl- and glucose concentrations increased in the exposed fish. Levels of Ht, Hb and RBC were significantly increased. The gill NKA activity also increased. Exposed fish exhibited histological alterations in the gills such as hypertrophy and proliferation of chloride cells, blood vessels dilation, aneurysms and hemorrhage of the lamella. The histological index indicated moderate to heavy damage to the gills. CBI provokes liver and gills oxidative stress, gill structural damages, and ionic imbalance. A multi-biomarker approach allows us to see that B. amazonicus was unable to cope with CBI exposure.


Asunto(s)
Characiformes/fisiología , Piretrinas/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Biomarcadores/metabolismo , Glutatión/metabolismo , Glutatión Peroxidasa/metabolismo , Glutatión Transferasa/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Estrés Oxidativo , Superóxido Dismutasa/metabolismo
3.
Chemosphere ; 175: 431-439, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28242458

RESUMEN

The toxicological effect of cellular extract of cyanobacterium Radiocystis fernandoi strain R28 containing RR and YR microcystins was analyzed in the fish Hoplias malabaricus with emphasis on the liver structure and energetic metabolism, after short-term exposure. Fish were intraperitoneally (i.p.) injected with 100 µg of equivalent MC-LR kg-1 body mass containing in the cellular extract of R. fernandoi strain R28. Twelve and 96 h post-injection, the plasma, liver and white muscle were sampled for biochemical analyses and liver was also sampled for morphological analyses. After i.p. injection, the activity of acid phosphatase (ACP), alanine aminotransferase (ALT) and direct bilirubin increased in the plasma, while ALT and aspartate aminotransferase (AST) decreased in the liver. Glucose, lactate and pyruvate increased while protein decreased in the plasma; glycogen, pyruvate and lactate decreased in the liver; and glycogen and glucose increased in the muscle. Ammonia increased in the plasma, liver and muscle. The hepatocyte cell shape changed from polyhedral to round after cellular extract injection; there was loss of biliary canaliculus organization, but the biliary duct morphology was conserved in the liver parenchyma. In conclusion, microcystins present in the cellular extract of R. fernandoi strain R28 affect the liver structure of H. malabaricus, but the liver was able to continuously produce energy by adjusting its intermediate metabolism; glycogenolysis and gluconeogenesis maintained glucose homeostasis and energy supply.


Asunto(s)
Characiformes/metabolismo , Cianobacterias/química , Metabolismo Energético/efectos de los fármacos , Hígado/efectos de los fármacos , Microcistinas/toxicidad , Alanina Transaminasa/sangre , Animales , Aspartato Aminotransferasas/sangre , Bilirrubina/sangre , Characiformes/sangre , Glucógeno/metabolismo , Hepatocitos/efectos de los fármacos , Hepatocitos/enzimología , Hepatocitos/ultraestructura , Hígado/enzimología , Hígado/ultraestructura , Toxinas Marinas , Microcistinas/aislamiento & purificación , Músculos/efectos de los fármacos , Músculos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA