Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 474
Filtrar
1.
bioRxiv ; 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38746109

RESUMEN

KIR3DL1 is a polymorphic inhibitory Natural Killer (NK) cell receptor that recognizes Human Leukocyte Antigen (HLA) class I allotypes that contain the Bw4 motif. Structural analyses have shown that in addition to residues 77-83 that span the Bw4 motif, polymorphism at other sites throughout the HLA molecule can influence the interaction with KIR3DL1. Given the extensive polymorphism of both KIR3DL1 and HLA class I, we built a machine learning prediction model to describe the influence of allotypic variation on the binding of KIR3DL1 to HLA class I. Nine KIR3DL1 tetramers were screened for reactivity against a panel of HLA class I molecules which revealed different patterns of specificity for each KIR3DL1 allotype. Separate models were trained for each of KIR3DL1 allotypes based on the full amino sequence of exons 2 and 3 encoding the α 1 and α 2 domains of the class I HLA allotypes, the set of polymorphic positions that span the Bw4 motif, or the positions that encode α 1 and α 2 but exclude the connecting loops. The Multi-Label-Vector-Optimization (MLVO) model trained on all alpha helix positions performed best with AUC scores ranging from 0.74 to 0.974 for the 9 KIR3DL1 allotype models. We show that a binary division into binder and non-binder is not precise, and that intermediate levels exist. Using the same models, within the binder group, high- and low-binder categories can also be predicted, the regions in HLA affecting the high vs low binder being completely distinct from the classical Bw4 motif. We further show that these positions affect binding affinity in a nonadditive way and induce deviations from linear models used to predict interaction strength. We propose that this approach should be used in lieu of simpler binding models based on a single HLA motif.

2.
Nat Commun ; 15(1): 3387, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38684663

RESUMEN

Influenza B viruses (IBVs) cause substantive morbidity and mortality, and yet immunity towards IBVs remains understudied. CD8+ T-cells provide broadly cross-reactive immunity and alleviate disease severity by recognizing conserved epitopes. Despite the IBV burden, only 18 IBV-specific T-cell epitopes restricted by 5 HLAs have been identified currently. A broader array of conserved IBV T-cell epitopes is needed to develop effective cross-reactive T-cell based IBV vaccines. Here we identify 9 highly conserved IBV CD8+ T-cell epitopes restricted to HLA-B*07:02, HLA-B*08:01 and HLA-B*35:01. Memory IBV-specific tetramer+CD8+ T-cells are present within blood and tissues. Frequencies of IBV-specific CD8+ T-cells decline with age, but maintain a central memory phenotype. HLA-B*07:02 and HLA-B*08:01-restricted NP30-38 epitope-specific T-cells have distinct T-cell receptor repertoires. We provide structural basis for the IBV HLA-B*07:02-restricted NS1196-206 (11-mer) and HLA-B*07:02-restricted NP30-38 epitope presentation. Our study increases the number of IBV CD8+ T-cell epitopes, and defines IBV-specific CD8+ T-cells at cellular and molecular levels, across tissues and age.


Asunto(s)
Linfocitos T CD8-positivos , Epítopos de Linfocito T , Virus de la Influenza B , Gripe Humana , Linfocitos T CD8-positivos/inmunología , Humanos , Epítopos de Linfocito T/inmunología , Virus de la Influenza B/inmunología , Gripe Humana/inmunología , Gripe Humana/virología , Adulto , Persona de Mediana Edad , Anciano , Reacciones Cruzadas/inmunología , Adulto Joven , Femenino , Masculino , Memoria Inmunológica/inmunología , Adolescente , Antígenos HLA-B/inmunología , Niño , Preescolar
3.
J Biol Chem ; 300(5): 107229, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38537698

RESUMEN

Mucosal-associated invariant T (MAIT) cells can elicit immune responses against riboflavin-based antigens presented by the evolutionary conserved MHC class I related protein, MR1. While we have an understanding of the structural basis of human MAIT cell receptor (TCR) recognition of human MR1 presenting a variety of ligands, how the semi-invariant mouse MAIT TCR binds mouse MR1-ligand remains unknown. Here, we determine the crystal structures of 2 mouse TRAV1-TRBV13-2+ MAIT TCR-MR1-5-OP-RU ternary complexes, whose TCRs differ only in the composition of their CDR3ß loops. These mouse MAIT TCRs mediate high affinity interactions with mouse MR1-5-OP-RU and cross-recognize human MR1-5-OP-RU. Similarly, a human MAIT TCR could bind mouse MR1-5-OP-RU with high affinity. This cross-species recognition indicates the evolutionary conserved nature of this MAIT TCR-MR1 axis. Comparing crystal structures of the mouse versus human MAIT TCR-MR1-5-OP-RU complexes provides structural insight into the conserved nature of this MAIT TCR-MR1 interaction and conserved specificity for the microbial antigens, whereby key germline-encoded interactions required for MAIT activation are maintained. This is an important consideration for the development of MAIT cell-based therapeutics that will rely on preclinical mouse models of disease.

4.
Proc Natl Acad Sci U S A ; 121(9): e2315985121, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38377192

RESUMEN

Recurrent, ancient arms races between viruses and hosts have shaped both host immunological defense strategies as well as viral countermeasures. One such battle is waged by the glycoprotein US11 encoded by the persisting human cytomegalovirus. US11 mediates degradation of major histocompatibility class I (MHC-I) molecules to prevent CD8+ T-cell activation. Here, we studied the consequences of the arms race between US11 and primate MHC-A proteins, leading us to uncover a tit-for-tat coevolution and its impact on MHC-A diversification. We found that US11 spurred MHC-A adaptation to evade viral antagonism: In an ancestor of great apes, the MHC-A A2 lineage acquired a Pro184Ala mutation, which confers resistance against the ancestral US11 targeting strategy. In response, US11 deployed a unique low-complexity region (LCR), which exploits the MHC-I peptide loading complex to target the MHC-A2 peptide-binding groove. In addition, the global spread of the human HLA-A*02 allelic family prompted US11 to employ a superior LCR strategy with an optimally fitting peptide mimetic that specifically antagonizes HLA-A*02. Thus, despite cytomegaloviruses low pathogenic potential, the increasing commitment of US11 to MHC-A has significantly promoted diversification of MHC-A in hominids.


Asunto(s)
Antígenos de Histocompatibilidad Clase I , Hominidae , Animales , Humanos , Proteínas Virales/metabolismo , Citomegalovirus , Hominidae/genética , Hominidae/metabolismo , Línea Celular , Antígenos de Histocompatibilidad/metabolismo , Antígenos HLA-A/metabolismo , Péptidos/metabolismo
5.
Immunol Cell Biol ; 102(5): 321-325, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38403985

RESUMEN

Monash Sensory Science is a scientific outreach initiative specifically tailored to members of the community who are blind, have low vision and have diverse needs. The purpose of this initiative is to showcase Australian science and encourage greater participation in science from these often-overlooked communities. This article presents our experience in establishing Monash Sensory Science at Monash University and inspiring other institutions to launch similar outreach events.


Asunto(s)
Baja Visión , Humanos , Australia , Ceguera
6.
iScience ; 27(2): 108801, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38303725

RESUMEN

The major histocompatibility complex (MHC), Class-I-related (MR1) molecule presents microbiome-synthesized metabolites to Mucosal-associated invariant T (MAIT) cells, present at sites of herpes simplex virus (HSV) infection. During HSV type 1 (HSV-1) infection there is a profound and rapid loss of MR1, in part due to expression of unique short 3 protein. Here we show that virion host shutoff RNase protein downregulates MR1 protein, through loss of MR1 transcripts. Furthermore, a third viral protein, infected cell protein 22, also downregulates MR1, but not classical MHC-I molecules. This occurs early in the MR1 trafficking pathway through proteasomal degradation. Finally, HSV-2 infection results in the loss of MR1 transcripts, and intracellular and surface MR1 protein, comparable to that seen during HSV-1 infection. Thus HSV coordinates a multifaceted attack on the MR1 antigen presentation pathway, potentially protecting infected cells from MAIT cell T cell receptor-mediated detection at sites of primary infection and reactivation.

7.
Sci Immunol ; 9(91): eade6924, 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38277465

RESUMEN

Mucosal-associated invariant T (MAIT) cells are innate-like T cells that recognize bacterial riboflavin-based metabolites as activating antigens. Although MAIT cells are found in tissues, it is unknown whether any host tissue-derived antigens exist. Here, we report that a sulfated bile acid, cholic acid 7-sulfate (CA7S), binds the nonclassical MHC class I protein MR1 and is recognized by MAIT cells. CA7S is a host-derived metabolite whose levels were reduced by more than 98% in germ-free mice. Deletion of the sulfotransferase 2a family of enzymes (Sult2a1-8) responsible for CA7S synthesis reduced the number of thymic MAIT cells in mice. Moreover, recognition of CA7S induced MAIT cell survival and the expression of a homeostatic gene signature. By contrast, recognition of a previously described foreign antigen, 5-(2-oxopropylideneamino)-6-d-ribitylaminouracil (5-OP-RU), drove MAIT cell proliferation and the expression of inflammatory genes. Thus, CA7S is an endogenous antigen for MAIT cells, which promotes their development and function.


Asunto(s)
Células T Invariantes Asociadas a Mucosa , Animales , Ratones , Ácidos y Sales Biliares , Ligandos , Sulfatos , Antígenos de Histocompatibilidad Menor/metabolismo , Antígenos
8.
FEBS J ; 291(7): 1530-1544, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38158698

RESUMEN

The heterodimeric natural killer cells antigen CD94 (CD94)-NKG2-A/NKG2-B type II integral membrane protein (NKG2A) receptor family expressed on human and mouse natural killer (NK) cells monitors global major histocompatibility complex (MHC) class I cell surface expression levels through binding to MHC class Ia-derived leader sequence peptides presented by HLA class I histocompatibility antigen, alpha chain E (HLA-E; in humans) or H-2 class I histocompatibility antigen, D-37 (Qa-1b; in mice). Although the molecular basis underpinning human CD94-NKG2A recognition of HLA-E is known, the equivalent interaction in the murine setting is not. By determining the high-resolution crystal structure of murine CD94-NKG2A in complex with Qa-1b presenting the Qa-1 determinant modifier peptide (QDM), we resolved the mode of binding. Compared to the human homologue, the murine CD94-NKG2A-Qa-1b-QDM displayed alterations in the distribution of interactions across CD94 and NKG2A subunits that coincide with differences in electrostatic complementarity of the ternary complex and the lack of cross-species reactivity. Nevertheless, we show that Qa-1b could be modified through W65R + N73I mutations to mimic HLA-E, facilitating binding with both human and murine CD94-NKG2A. These data underscore human and murine CD94-NKG2A cross-species heterogeneity and provide a foundation for humanising Qa-1b in immune system models.


Asunto(s)
Antígenos HLA-E , Señales de Clasificación de Proteína , Animales , Humanos , Ratones , Antígenos de Histocompatibilidad Clase I/genética , Antígenos de Histocompatibilidad Clase I/metabolismo , Antígenos HLA/genética , Antígenos HLA/metabolismo , Células Asesinas Naturales , Subfamília C de Receptores Similares a Lectina de Células NK/genética , Subfamília C de Receptores Similares a Lectina de Células NK/metabolismo , Subfamília D de Receptores Similares a Lectina de las Células NK/genética , Subfamília D de Receptores Similares a Lectina de las Células NK/química , Péptidos/metabolismo , Receptores de Células Asesinas Naturales/metabolismo
9.
J Immunother Cancer ; 11(12)2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-38040419

RESUMEN

BACKGROUND: CD1d is a monomorphic major histocompatibility complex class I-like molecule that presents lipid antigens to distinct T-cell subsets and can be expressed by various malignancies. Antibody-mediated targeting of CD1d on multiple myeloma cells was reported to induce apoptosis and could therefore constitute a novel therapeutic approach. METHODS: To determine how a CD1d-specific single-domain antibody (VHH) enhances binding of the early apoptosis marker annexin V to CD1d+ tumor cells we use in vitro cell-based assays and CRISPR-Cas9-mediated gene editing, and to determine the structure of the VHH1D17-CD1d(endogenous lipid) complex we use X-ray crystallography. RESULTS: Anti-CD1d VHH1D17 strongly enhances annexin V binding to CD1d+ tumor cells but this does not reflect induction of apoptosis. Instead, we show that VHH1D17 enhances presentation of phosphatidylserine (PS) in CD1d and that this is saposin dependent. The crystal structure of the VHH1D17-CD1d(endogenous lipid) complex demonstrates that VHH1D17 binds the A'-pocket of CD1d, leaving the lipid headgroup solvent exposed, and has an electro-negatively charged patch which could be involved in the enhanced PS presentation by CD1d. Presentation of PS in CD1d does not trigger phagocytosis but leads to greatly enhanced binding of T-cell immunoglobulin and mucin domain containing molecules (TIM)-1 to TIM-3, TIM-4 and induces TIM-3 signaling. CONCLUSION: Our findings reveal the existence of an immune modulatory CD1d(PS)-TIM axis with potentially unexpected implications for immune regulation in both physiological and pathological conditions.


Asunto(s)
Receptor 2 Celular del Virus de la Hepatitis A , Anticuerpos de Dominio Único , Humanos , Receptor 2 Celular del Virus de la Hepatitis A/metabolismo , Anticuerpos de Dominio Único/metabolismo , Fosfatidilserinas/metabolismo , Anexina A5 , Subgrupos de Linfocitos T
10.
J Nat Prod ; 86(12): 2630-2637, 2023 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-37993134

RESUMEN

The search for effective antiviral agents against SARS-CoV-2 remains a critical global endeavor. In this study, we focused on the viral nucleocapsid protein Nsp9, which is a key player in viral RNA replication and an attractive drug target. Employing a two-pronged approach, an in-house natural product library was screened using native mass spectrometry to identify compounds capable of binding to Nsp9. From the initial screening, apart from the previously reported hit oridonin (protein binding ratio of 0.56 in the initial screening, Kd = 7.2 ± 1.0 µM), we have identified a second Nsp9-interacting compound, the diterpenoid ryanodine, with a protein binding ratio of 0.3 and a Kd of 48.05 ± 5.03 µM. To gain deeper insights into the binding interactions and to explore potential structural requirements, the collision-induced affinity selection mass spectrometry (CIAS-MS) approach allowed us to identify six known oridonin analogues produced by the plant Rabdosia rubescens, each with varying affinities to Nsp9. Native MS validation of their individual binding activities to Nsp9 revealed that all analogues exhibited reduced affinity compared to oridonin. Structural-activity relationship analysis highlighted key functional groups, including 1-OH, 6-OH, 7-OH, and the enone moiety, which are crucial for Nsp9 binding. Combined data from our native mass spectrometry and CIAS-MS approaches provide valuable insights into the molecular interactions between Nsp9 and these compounds.


Asunto(s)
COVID-19 , Diterpenos de Tipo Kaurano , Humanos , SARS-CoV-2 , Diterpenos de Tipo Kaurano/farmacología , Unión Proteica , Antivirales/farmacología
11.
Nat Immunol ; 24(11): 1890-1907, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37749325

RESUMEN

CD8+ T cells provide robust antiviral immunity, but how epitope-specific T cells evolve across the human lifespan is unclear. Here we defined CD8+ T cell immunity directed at the prominent influenza epitope HLA-A*02:01-M158-66 (A2/M158) across four age groups at phenotypic, transcriptomic, clonal and functional levels. We identify a linear differentiation trajectory from newborns to children then adults, followed by divergence and a clonal reset in older adults. Gene profiles in older adults closely resemble those of newborns and children, despite being clonally distinct. Only child-derived and adult-derived A2/M158+CD8+ T cells had the potential to differentiate into highly cytotoxic epitope-specific CD8+ T cells, which was linked to highly functional public T cell receptor (TCR)αß signatures. Suboptimal TCRαß signatures in older adults led to less proliferation, polyfunctionality, avidity and recognition of peptide mutants, although displayed no signs of exhaustion. These data suggest that priming T cells at different stages of life might greatly affect CD8+ T cell responses toward viral infections.


Asunto(s)
Linfocitos T CD8-positivos , Longevidad , Recién Nacido , Humanos , Anciano , Epítopos de Linfocito T/genética , Linfocitos T Citotóxicos , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Receptores de Antígenos de Linfocitos T/genética
12.
Immunol Cell Biol ; 101(10): 964-974, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37725525

RESUMEN

Indigenous peoples globally are at increased risk of COVID-19-associated morbidity and mortality. However, data that describe immune responses to SARS-CoV-2 infection in Indigenous populations are lacking. We evaluated immune responses in Australian First Nations peoples hospitalized with COVID-19. Our work comprehensively mapped out inflammatory, humoral and adaptive immune responses following SARS-CoV-2 infection. Patients were recruited early following the lifting of strict public health measures in the Northern Territory, Australia, between November 2021 and May 2022. Australian First Nations peoples recovering from COVID-19 showed increased levels of MCP-1 and IL-8 cytokines, IgG-antibodies against Delta-RBD and memory SARS-CoV-2-specific T cell responses prior to hospital discharge in comparison with hospital admission, with resolution of hyperactivated HLA-DR+ CD38+ T cells. SARS-CoV-2 infection elicited coordinated ASC, Tfh and CD8+ T cell responses in concert with CD4+ T cell responses. Delta and Omicron RBD-IgG, as well as Ancestral N-IgG antibodies, strongly correlated with Ancestral RBD-IgG antibodies and Spike-specific memory B cells. We provide evidence of broad and robust immune responses following SARS-CoV-2 infection in Indigenous peoples, resembling those of non-Indigenous COVID-19 hospitalized patients.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Australia , Inmunoglobulina G , Pueblos Indígenas , Inmunidad , Anticuerpos Antivirales
13.
Cell ; 186(21): 4583-4596.e13, 2023 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-37725977

RESUMEN

The CD1 system binds lipid antigens for display to T cells. Here, we solved lipidomes for the four human CD1 antigen-presenting molecules, providing a map of self-lipid display. Answering a basic question, the detection of >2,000 CD1-lipid complexes demonstrates broad presentation of self-sphingolipids and phospholipids. Whereas peptide antigens are chemically processed, many lipids are presented in an unaltered form. However, each type of CD1 protein differentially edits the self-lipidome to show distinct capture motifs based on lipid length and chemical composition, suggesting general antigen display mechanisms. For CD1a and CD1d, lipid size matches the CD1 cleft volume. CD1c cleft size is more variable, and CD1b is the outlier, where ligands and clefts show an extreme size mismatch that is explained by uniformly seating two small lipids in one cleft. Furthermore, the list of compounds that comprise the integrated CD1 lipidome supports the ongoing discovery of lipid blockers and antigens for T cells.


Asunto(s)
Antígenos CD1 , Lípidos , Humanos , Presentación de Antígeno , Antígenos CD1/química , Antígenos CD1/metabolismo , Lipidómica , Lípidos/química , Linfocitos T , Secuencias de Aminoácidos
14.
Eur J Immunol ; 53(10): e2250333, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37539748

RESUMEN

In addition to serving as the main physical barrier with the outside world, human skin is abundantly infiltrated with resident αß T cells that respond differently to self, infectious, microbiome, and noxious stimuli.  To study skin T cells during infection and inflammation, experimental biologists track T-cell surface phenotypes and effector functions, which are often interpreted with the untested assumption that MHC proteins and peptide antigens drive measured responses.  However, a broader perspective is that CD1 proteins also activate human T cells, and in skin, Langerhans cells (LCs) are abundant antigen presenting cells that express extremely high levels of CD1a.  The emergence of new experimental tools, including CD1a tetramers carrying endogenous lipids, now show that CD1a-reactive T cells comprise a large population of resident T cells in human skin.  Here, we review studies showing that skin-derived αß T cells directly recognize CD1a proteins, and certain bound lipids, such as contact dermatitis allergens, trigger T-cell responses. Other natural skin lipids inhibit CD1a-mediated T-cell responses, providing an entry point for the development of therapeutic lipids that block T-cell responses. Increasing evidence points to a distinct role of CD1a in type 2 and 22 T-cell responses, providing new insights into psoriasis, contact dermatitis, and other T-cell-mediated skin diseases.


Asunto(s)
Dermatitis por Contacto , Enfermedades de la Piel , Humanos , Linfocitos T , Piel , Lípidos , Antígenos CD1/metabolismo
15.
Sci Adv ; 9(32): eabo5128, 2023 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-37556545

RESUMEN

Structural docking between the adaptive immune receptors (AIRs), including T cell receptors (TCRs) and B cell receptors (BCRs), and their cognate antigens are one of the most fundamental processes in adaptive immunity. However, current methods for predicting AIR-antigen binding largely rely on sequence-derived features of AIRs, omitting the structure features that are essential for binding affinity. In this study, we present a deep learning framework, termed DeepAIR, for the accurate prediction of AIR-antigen binding by integrating both sequence and structure features of AIRs. DeepAIR achieves a Pearson's correlation of 0.813 in predicting the binding affinity of TCR, and a median area under the receiver-operating characteristic curve (AUC) of 0.904 and 0.942 in predicting the binding reactivity of TCR and BCR, respectively. Meanwhile, using TCR and BCR repertoire, DeepAIR correctly identifies every patient with nasopharyngeal carcinoma and inflammatory bowel disease in test data. Thus, DeepAIR improves the AIR-antigen binding prediction that facilitates the study of adaptive immunity.


Asunto(s)
Aprendizaje Profundo , Humanos , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores de Antígenos de Linfocitos B/metabolismo , Inmunidad Adaptativa , Antígenos
16.
Allergy ; 78(11): 2980-2993, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37452515

RESUMEN

Allopurinol (ALP) is a successful drug used in the treatment of gout. However, this drug has been implicated in hypersensitivity reactions that can cause severe to life-threatening reactions such as Stevens-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN). Individuals who carry the human leukocyte antigen (HLA)-B*58:01 allotype are at higher risk of experiencing a hypersensitivity reaction (odds ratios ranging from 5.62 to 580.3 for mild to severe reactions, respectively). In addition to the parent drug, the metabolite oxypurinol (OXP) is implicated in triggering T cell-mediated immunopathology via a labile interaction with HLA-B*58:01. To date, there has been limited information regarding the T-cell receptor (TCR) repertoire usage of reactive T cells in patients with ALP-induced SJS or TEN and, in particular, there are no reports examining paired αßTCRs. Here, using in vitro drug-treated PBMCs isolated from both resolved ALP-induced SJS/TEN cases and drug-naïve healthy donors, we show that OXP is the driver of CD8+ T cell-mediated responses and that drug-exposed memory T cells can exhibit a proinflammatory immunophenotype similar to T cells described during active disease. Furthermore, this response supported the pharmacological interaction with immune receptors (p-i) concept by showcasing (i) the labile metabolite interaction with peptide/HLA complexes, (ii) immunogenic complex formation at the cell surface, and (iii) lack of requirement for antigen processing to elicit drug-induced T cell responsiveness. Examination of paired OXP-induced αßTCR repertoires highlighted an oligoclonal and private clonotypic profile in both resolved ALP-induced SJS/TEN cases and drug-naïve healthy donors.


Asunto(s)
Alopurinol , Síndrome de Stevens-Johnson , Humanos , Alopurinol/efectos adversos , Oxipurinol/farmacología , Síndrome de Stevens-Johnson/genética , Linfocitos T CD8-positivos , Antígenos HLA-B/genética
17.
Nat Immunol ; 24(9): 1487-1498, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37474653

RESUMEN

Malaria is caused by Plasmodium species transmitted by Anopheles mosquitoes. Following a mosquito bite, Plasmodium sporozoites migrate from skin to liver, where extensive replication occurs, emerging later as merozoites that can infect red blood cells and cause symptoms of disease. As liver tissue-resident memory T cells (Trm cells) have recently been shown to control liver-stage infections, we embarked on a messenger RNA (mRNA)-based vaccine strategy to induce liver Trm cells to prevent malaria. Although a standard mRNA vaccine was unable to generate liver Trm or protect against challenge with Plasmodium berghei sporozoites in mice, addition of an agonist that recruits T cell help from type I natural killer T cells under mRNA-vaccination conditions resulted in significant generation of liver Trm cells and effective protection. Moreover, whereas previous exposure of mice to blood-stage infection impaired traditional vaccines based on attenuated sporozoites, mRNA vaccination was unaffected, underlining the potential for such a rational mRNA-based strategy in malaria-endemic regions.


Asunto(s)
Vacunas contra la Malaria , Malaria , Animales , Ratones , Células T de Memoria , Malaria/prevención & control , Hígado , Plasmodium berghei/genética , Linfocitos T CD8-positivos
18.
Curr Opin Immunol ; 83: 102351, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37276819

RESUMEN

Metabolite-based T-cell immunity is emerging as a major player in antimicrobial immunity, autoimmunity, and cancer. Here, small-molecule metabolites were identified to be captured and presented by the major histocompatibility complex class-I-related molecule (MR1) to T cells, namely mucosal-associated invariant T cells (MAIT) and diverse MR1-restricted T cells. Both MR1 and MAIT are evolutionarily conserved in many mammals, suggesting important roles in host immunity. Rational chemical modifications of these naturally occurring metabolites, termed altered metabolite ligands (AMLs), have advanced our understanding of the molecular correlates of MAIT T cell receptor (TCR)-MR1 recognition. This review provides a generalized framework for metabolite recognition and modulation of MAIT cells.


Asunto(s)
Células T Invariantes Asociadas a Mucosa , Animales , Humanos , Receptores de Antígenos de Linfocitos T alfa-beta/metabolismo , Antígenos de Histocompatibilidad Menor , Antígenos de Histocompatibilidad Clase I , Receptores de Antígenos de Linfocitos T/metabolismo , Mamíferos
19.
Nat Immunol ; 24(7): 1052-1053, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37308666
20.
J Biol Chem ; 299(7): 104930, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37330172

RESUMEN

Psoriasis is a chronic skin disease characterized by hyperproliferative epidermal lesions infiltrated by autoreactive T cells. Individuals expressing the human leukocyte antigen (HLA) C∗06:02 allele are at highest risk for developing psoriasis. An autoreactive T cell clone (termed Vα3S1/Vß13S1) isolated from psoriatic plaques is selective for HLA-C∗06:02, presenting a peptide derived from the melanocyte-specific autoantigen ADAMTSL5 (VRSRRCLRL). Here we determine the crystal structure of this psoriatic TCR-HLA-C∗06:02 ADAMTSL5 complex with a stabilized peptide. Docking of the TCR involves an extensive complementary charge network formed between negatively charged TCR residues interleaving with exposed arginine residues from the self-peptide and the HLA-C∗06:02 α1 helix. We probed these interactions through mutagenesis and activation assays. The charged interface spans the polymorphic region of the C1/C2 HLA group. Notably the peptide-binding groove of HLA-C∗06:02 appears exquisitely suited for presenting highly charged Arg-rich epitopes recognized by this acidic psoriatic TCR. Overall, we provide a structural basis for understanding the engagement of melanocyte antigen-presenting cells by a TCR implicated in psoriasis while simultaneously expanding our knowledge of how TCRs engage HLA-C.


Asunto(s)
Antígenos HLA-C , Psoriasis , Humanos , Electricidad Estática , Péptidos/química , Psoriasis/patología , Receptores de Antígenos de Linfocitos T/genética , Proteínas ADAMTS
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...