Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Environ Toxicol Pharmacol ; 108: 104462, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38710242

RESUMEN

Nanoparticles (NPs) have become an important part of everyday life, including their application in dentistry. Aside from their undoubted benefits, questions regarding their risk to human health, and/or genome have arisen. However, studies concerning cytogenetic effects are completely absent. A group of women acutely exposed to an aerosol released during dental nanocomposite grinding was sampled before and after the work. Exposure monitoring including nano (PM0.1) and respirable (PM4) fractions was performed. Whole-chromosome painting for autosomes #1, #4, and gonosome X was applied to estimate the pattern of cytogenetic damage including structural and numerical alterations. The results show stable genomic frequency of translocations (FG/100), in contrast to a significant 37.8% (p<0.05) increase of numerical aberrations caused by monosomies (p<0.05), but not trisomies. Monosomies were mostly observed for chromosome X. In conclusion, exposure to nanocomposites in stomatology may lead to an increase in numerical aberrations which can be dangerous for dividing cells.


Asunto(s)
Nanocompuestos , Exposición Profesional , Humanos , Femenino , Nanocompuestos/toxicidad , Nanocompuestos/química , Persona de Mediana Edad , Exposición Profesional/efectos adversos , Aberraciones Cromosómicas , Adulto , Materiales Dentales/toxicidad , Pintura Cromosómica
2.
Nanomedicine (Lond) ; 19(3): 185-198, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38275177

RESUMEN

Aim: To find a practical biomonitoring method for researchers exposed to nanoparticles causing oxidative stress. Methods: In a continuation of a study in 2016-2018, biological samples (plasma, urine and exhaled breath condensate [EBC]) were collected in 2019-2020 from 43 researchers (13.8 ± 3.0 years of exposure) and 45 controls. Antioxidant status was assessed using glutathione (GSH) and ferric-reducing antioxidant power, while oxidative stress was measured as thiobarbituric acid reactive substances, all using spectrophotometric methods. Researchers' personal nanoparticle exposure was monitored. Results: Plasma GSH was elevated in researchers both before and after exposure (p < 0.01); postexposure plasma GSH correlated with nanoparticle exposure, and GSH in EBC increased. Conclusion: The results suggest adaptation to chronic exposure to nanoparticles, as monitored by plasma and EBC GSH.


What is this study about? Identifying markers of oxidative stress and/or adaptation to oxidation stress could offer tools for monitoring exposure to nanoparticles in exposed researchers. In this study, we question whether these markers correlate with their personal exposure during the shift. What were the results? We found that exposure to nanoparticles correlated with the antioxidant marker glutathione, which is higher in workers who are already pre-exposed. What do the results mean? This study suggests that the researchers have adapted to nanoparticle exposure and are ready to combat oxidative stress. However, the similarity with increased markers of oxidative stress from asbestos and silica exposure, including nucleic acid oxidation, previously found in these researchers highlights the need for further research in this area to better understand and prevent potential future effects.


Asunto(s)
Antioxidantes , Nanopartículas , Estrés Oxidativo , Glutatión , Sustancias Reactivas al Ácido Tiobarbitúrico , Pruebas Respiratorias/métodos , Biomarcadores/metabolismo
3.
Environ Pollut ; 323: 121290, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36804881

RESUMEN

Air pollution is a dominant environmental exposure factor with significant health consequences. Unexpectedly, research in a heavily polluted region of the Czech Republic, with traditional heavy industry, revealed repeatedly the lowest frequency of micronuclei in the season with the highest concentrations of air pollutants including carcinogenic benzo[a]pyrene (B[a]P). Molecular findings have been collected for more than 10 years from various locations of the Czech Republic, with differing quality of ambient air. Preliminary conclusions have suggested adaptation of the population from the polluted locality (Ostrava, Moravian-Silesian Region (MSR)) to chronic air pollution exposure. In this study we utilize the previous findings and, for the first time, investigate micronuclei (MN) frequency by type: (i) centromere positive (CEN+) MN, representing chromosomal losses, and (ii) centromere negative (CEN-) MN representing chromosomal breaks. As previous results indicated differences between populations in the expression of XRCC5, a gene involved in the non-homologous end-joining (NHEJ) repair pathway, possible variations in epigenetic settings in this gene were also investigated. This new research was conducted in two seasons in the groups from two localities with different air quality levels (Ostrava (OS) and Prague (PG)). The obtained new results show significantly lower frequencies of chromosomal breaks in the OS subjects, related to the highest air pollution levels (p < 0.001). In contrast, chromosomal losses were comparable between both groups. In addition, significantly lower DNA methylation was found in 14.3% of the analyzed CpG loci of XRCC5 in the population from OS. In conclusion, the epigenetic adaptation (hypomethylation) in XRCC5 involved in the NHEJ repair pathway in the population from the polluted region, was suggested as a reason for the reduced level of chromosomal breaks. Further research is needed to explore the additional mechanisms, including genetic adaptation.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Humanos , Rotura Cromosómica , Contaminantes Atmosféricos/toxicidad , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Exposición a Riesgos Ambientales , Aberraciones Cromosómicas , Epigénesis Genética , República Checa
4.
Foods ; 11(23)2022 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-36496701

RESUMEN

The maternal diet during pregnancy affects neonatal health status. The objective of this study was to assess the nutritional quality of the maternal diet, and its contamination by persistent organic pollutants (POPs), in pregnant women living in two areas of the Czech Republic with different levels of air pollution, and subsequently to assess the relationship of these two factors with birth weight and neonatal oxidative stress. To determine the level of oxidative stress, 8-isoprostane concentrations in umbilical cord plasma were measured. The overall nutritional quality of the maternal diet was not optimal. Of the nutritional factors, protein intake proved to be the most significant showing a positive relationship with birth weight, and a negative relationship with the oxidative stress of newborns. Dietary contamination by persistent organic pollutants was low and showed no statistically significant relationship with birth weight. Only one of the 67 analyzed POPs, namely the insecticide dichlorodiphenyltrichloroethane (DDT), showed a statistically significant positive relationship with the level of neonatal oxidative stress.

5.
Artículo en Inglés | MEDLINE | ID: mdl-35329296

RESUMEN

We aimed to identify the variables that modify levels of oxidatively damaged DNA and lipid peroxidation in subjects living in diverse localities of the Czech Republic (a rural area, a metropolitan locality, and an industrial region). The sampling of a total of 126 policemen was conducted twice in two sampling seasons. Personal characteristics, concentrations of particulate matter of aerodynamic diameter <2.5 µm and benzo[a]pyrene in the ambient air, activities of antioxidant mechanisms (superoxide dismutase, catalase, glutathione peroxidase, and antioxidant capacity), levels of pro-inflammatory cytokines (TNF-α, IL-1ß, and IL-6), concentrations of persistent organic pollutants in blood plasma, and urinary levels of polycyclic aromatic hydrocarbon metabolites were investigated as parameters potentially affecting the markers of DNA oxidation (8-oxo-7,8-dihydro-2'-deoxyguanosine) and lipid peroxidation (15-F2t-isoprostane). The levels of oxidative stress markers mostly differed between the localities in the individual sampling seasons. Multivariate linear regression analysis revealed IL-6, a pro-inflammatory cytokine, as a factor with the most pronounced effects on oxidative stress parameters. The role of other variables, including environmental pollutants, was minor. In conclusion, our study showed that oxidative damage to macromolecules was affected by processes related to inflammation; however, we did not identify a specific environmental factor responsible for the pro-inflammatory response in the organism.


Asunto(s)
Contaminantes Atmosféricos , Contaminantes Ambientales , Hidrocarburos Policíclicos Aromáticos , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/toxicidad , Antioxidantes/análisis , Biomarcadores , República Checa , ADN , Contaminantes Ambientales/análisis , Contaminantes Ambientales/toxicidad , Humanos , Interleucina-6 , Estrés Oxidativo , Material Particulado/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Hidrocarburos Policíclicos Aromáticos/toxicidad
6.
Int J Mol Sci ; 23(3)2022 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-35163587

RESUMEN

DNA methylation is the most studied epigenetic mechanism that regulates gene expression, and it can serve as a useful biomarker of prior environmental exposure and future health outcomes. This study focused on DNA methylation profiles in a human cohort, comprising 125 nonsmoking city policemen (sampled twice), living and working in three localities (Prague, Ostrava and Ceske Budejovice) of the Czech Republic, who spent the majority of their working time outdoors. The main characterization of the localities, differing by major sources of air pollution, was defined by the stationary air pollution monitoring of PM2.5, B[a]P and NO2. DNA methylation was analyzed by a genome-wide microarray method. No season-specific DNA methylation pattern was discovered; however, we identified 13,643 differentially methylated CpG loci (DML) for a comparison between the Prague and Ostrava groups. The most significant DML was cg10123377 (log2FC = -1.92, p = 8.30 × 10-4) and loci annotated to RPTOR (total 20 CpG loci). We also found two hypomethylated loci annotated to the DNA repair gene XRCC5. Groups of DML annotated to the same gene were linked to diabetes mellitus (KCNQ1), respiratory diseases (PTPRN2), the dopaminergic system of the brain and neurodegenerative diseases (NR4A2). The most significant possibly affected pathway was Axon guidance, with 86 potentially deregulated genes near DML. The cluster of gene sets that could be affected by DNA methylation in the Ostrava groups mainly includes the neuronal functions and biological processes of cell junctions and adhesion assembly. The study demonstrates that the differences in the type of air pollution between localities can affect a unique change in DNA methylation profiles across the human genome.


Asunto(s)
Contaminantes Atmosféricos/efectos adversos , Contaminación del Aire/efectos adversos , Metilación de ADN/efectos de los fármacos , Exposición a Riesgos Ambientales/efectos adversos , Policia , Adulto , República Checa , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Persona de Mediana Edad
7.
Environ Pollut ; 291: 118140, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34555793

RESUMEN

In this biomonitoring study, we evaluated the concentrations of 8 polychlorinated biphenyls (PCBs), 11 organochlorinated pesticides (OCPs), 33 brominated flame retardants (BFRs), 7 novel brominated and chlorinated flame retardants (novel FRs) and 30 per- and polyfluoroalkylated substances (PFAS) in human serum samples (n = 274). A total of 89 persistent organic pollutants (POPs) were measured in blood serum samples of city policemen living in three large cities and their adjacent areas (Ostrava, Prague, and Ceske Budejovice) in the Czech Republic. All samples were collected during the year 2019 in two sampling periods (spring and autumn). The identification/quantification of PCBs, OCPs, BFRs, novel FRs and PFAS was performed by means of gas chromatography coupled to (tandem) mass spectrometry (GC-MS/(MS)) and ultra-high performance liquid chromatography coupled to triple quadrupole tandem mass spectrometry (UHPLC-MS/MS). The most frequently detected pollutants were perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), perfluorooctanesulfonate (PFOS), perfluorohexanesulfonate (PFHxS), 2,2',3,4,4',5'-hexachlorobiphenyl (CB 138), 2,2',4,4',5,5'-hexachlorobiphenyl (CB 153), 2,2',3,3',4,4',5-heptachlorobiphenyl (CB 170), 2,2',3,4,4',5,5'-heptachlorobiphenyl (CB 180), hexachlorobenzene (HCB), and p,p'-dichlorodiphenyldichloroethylene (p,p'-DDE) quantified in 100% of serum samples. In the serum samples, the concentrations of determined POPs were in the range of 0.108-900 ng g-1 lipid weight (lw) for PCBs, 0.106-1016 ng g-1 lw for OCPs, <0.1-618 ng g-1 lw for FRs and <0.01-18.3 ng mL-1 for PFAS, respectively. Locality, sampling season, and age were significantly associated with several POP concentrations. One of the important conclusions was that within the spring sampling period, statistically significant higher concentrations of CB 170 and CB 180 were observed in the samples from Ostrava (industrial area) compared to Prague and Ceske Budejovice. Older policemen had higher concentrations of five PCBs and two OCPs in blood serum.


Asunto(s)
Contaminantes Ambientales , Hidrocarburos Clorados , Plaguicidas , Bifenilos Policlorados , Monitoreo Biológico , Ciudades , República Checa , Monitoreo del Ambiente , Contaminantes Ambientales/análisis , Cromatografía de Gases y Espectrometría de Masas , Humanos , Hidrocarburos Clorados/análisis , Plaguicidas/análisis , Bifenilos Policlorados/análisis , Suero/química , Espectrometría de Masas en Tándem
8.
Int J Mol Sci ; 22(15)2021 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-34360600

RESUMEN

A DNA methylation pattern represents an original plan of the function settings of individual cells and tissues. The basic strategies of its development and changes during the human lifetime are known, but the details related to its modification over the years on an individual basis have not yet been studied. Moreover, current evidence shows that environmental exposure could generate changes in DNA methylation settings and, subsequently, the function of genes. In this study, we analyzed the effect of chronic exposure to nanoparticles (NP) in occupationally exposed workers repeatedly sampled in four consecutive years (2016-2019). A detailed methylation pattern analysis of 14 persons (10 exposed and 4 controls) was performed on an individual basis. A microarray-based approach using chips, allowing the assessment of more than 850 K CpG loci, was used. Individual DNA methylation patterns were compared by principal component analysis (PCA). The results show the shift in DNA methylation patterns in individual years in all the exposed and control subjects. The overall range of differences varied between the years in individual persons. The differences between the first and last year of examination (a three-year time period) seem to be consistently greater in the NP-exposed subjects in comparison with the controls. The selected 14 most differently methylated cg loci were relatively stable in the chronically exposed subjects. In summary, the specific type of long-term exposure can contribute to the fixing of relevant epigenetic changes related to a specific environment as, e.g., NP inhalation.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Regulación de la Expresión Génica/efectos de los fármacos , Nanopartículas/efectos adversos , Enfermedades Profesionales/epidemiología , Exposición Profesional/efectos adversos , Adulto , Estudios de Casos y Controles , Islas de CpG , República Checa/epidemiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Enfermedades Profesionales/inducido químicamente , Enfermedades Profesionales/genética
9.
Nanomaterials (Basel) ; 11(8)2021 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-34443765

RESUMEN

The evaluation of the frequency of micronuclei (MN) is a broadly utilised approach in in vitro toxicity testing. Nevertheless, the specific properties of nanomaterials (NMs) give rise to concerns regarding the optimal methodological variants of the MN assay. In bronchial epithelial cells (BEAS-2B), we tested the genotoxicity of five types of NMs (TiO2: NM101, NM103; SiO2: NM200; Ag: NM300K, NM302) using four variants of MN protocols, differing in the time of exposure and the application of cytochalasin-B combined with the simultaneous and delayed co-treatment with NMs. Using transmission electron microscopy, we evaluated the impact of cytochalasin-B on the transport of NMs into the cells. To assess the behaviour of NMs in a culture media for individual testing conditions, we used dynamic light scattering measurement. The presence of NMs in the cells, their intracellular aggregation and dispersion properties were comparable when tests with or without cytochalasin-B were performed. The genotoxic potential of various TiO2 and Ag particles differed (NM101 < NM103 and NM302 < NM300K, respectively). The application of cytochalasin-B tended to increase the percentage of aberrant cells. In conclusion, the comparison of the testing strategies revealed that the level of DNA damage induced by NMs is affected by the selected methodological approach. This fact should be considered in the interpretation of the results of genotoxicity tests.

10.
Chemosphere ; 281: 130833, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34015653

RESUMEN

Road traffic emissions consist of gaseous components, particles of various sizes, and chemical compounds that are bound to them. Exposure to vehicle emissions is implicated in the etiology of inflammatory respiratory disorders. We investigated the inflammation-related markers in human bronchial epithelial cells (BEAS-2B) and a 3D model of the human airways (MucilAir™), after exposure to complete emissions and extractable organic matter (EOM) from particles generated by ordinary gasoline (E5), and a gasoline-ethanol blend (E20; ethanol content 20% v/v). The production of 22 lipid oxidation products (derivatives of linoleic and arachidonic acid, AA) and 45 inflammatory molecules (cytokines, chemokines, growth factors) was assessed after days 1 and 5 of exposure, using LC-MS/MS and a multiplex immunoassay, respectively. The response observed in MucilAir™ exposed to E5 gasoline emissions, characterized by elevated levels of pro-inflammatory AA metabolites (prostaglandins) and inflammatory markers, was the most pronounced. E20 EOM exposure was associated with increased levels of AA metabolites with anti-inflammatory effects in this cell model. The exposure of BEAS-2B cells to complete emissions reduced lipid oxidation, while E20 EOM tended to increase concentrations of AA metabolite and chemokine production; the impacts on other inflammatory markers were limited. In summary, complete E5 emission exposure of MucilAir™ induces the processes associated with the pro-inflammatory response. This observation highlights the potential negative health impacts of ordinary gasoline, while the effects of alternative fuel are relatively weak.


Asunto(s)
Contaminantes Atmosféricos , Gasolina , Contaminantes Atmosféricos/análisis , Cromatografía Liquida , Gasolina/análisis , Gasolina/toxicidad , Humanos , Inflamación/inducido químicamente , Lípidos , Material Particulado , Extractos Vegetales , Espectrometría de Masas en Tándem , Emisiones de Vehículos/análisis , Emisiones de Vehículos/toxicidad
11.
J Pers Med ; 11(1)2021 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-33477935

RESUMEN

Small non-coding RNA molecules (miRNAs) play an important role in the epigenetic regulation of gene expression. As these molecules have been repeatedly implicated in human cancers, they have been suggested as biomarkers of the disease. Additionally, miRNA levels have been shown to be affected by environmental pollutants, including airborne contaminants. In this review, we searched the current literature for miRNAs involved in lung cancer, as well as miRNAs deregulated as a result of exposure to air pollutants. We then performed a synthesis of the data and identified those molecules commonly deregulated under both conditions. We detected a total of 25 miRNAs meeting the criteria, among them, miR-222, miR-21, miR-126-3p, miR-155 and miR-425 being the most prominent. We propose these miRNAs as biomarkers of choice for the identification of human populations exposed to air pollution with a significant risk of developing lung cancer.

12.
Mutagenesis ; 35(6): 491-497, 2020 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-33367858

RESUMEN

Disruption of telomere length (TL) homeostasis in peripheral blood lymphocytes has been previously assessed as a potential biomarker of breast cancer (BC) risk. The present study addressed the relationship between lymphocyte TL (LTL), prognosis and clinicopathological features in the BC patients since these associations are insufficiently explored at present. LTL was measured in 611 BC patients and 154 healthy controls using the monochrome multiplex quantitative Polymerase Chain Reaction assay. In addition, we genotyped nine TL-associated single-nucleotide polymorphisms that had been identified through genome-wide association studies. Our results showed that the patients had significantly (P = 0.001, Mann-Whitney U-test) longer LTL [median (interquartile range); 1.48 (1.22-1.78)] than the healthy controls [1.27 (0.97-1.82)]. Patients homozygous (CC) for the common allele of hTERT rs2736108 or the variant allele (CC) of hTERC rs16847897 had longer LTL. The latter association remained statistically significant in the recessive genetic model after the Bonferroni correction (P = 0.004, Wilcoxon two-sample test). We observed no association between LTL and overall survival or relapse-free survival of the patients. LTL did not correlate with cancer staging based on Union for International Cancer Control (UICC), The tumor node metastasis (TNM) staging system classification, tumour grade or molecular BC subtypes. Overall, we observed an association between long LTL and BC disease and an association of the hTERC rs16847897 CC genotype with increased LTL. However, no association between LTL, clinicopathological features and survival of the patients was found.


Asunto(s)
Neoplasias de la Mama/genética , ARN/genética , Telomerasa/genética , Homeostasis del Telómero/genética , Adulto , Anciano , Anciano de 80 o más Años , Alelos , Biomarcadores de Tumor/genética , Neoplasias de la Mama/sangre , Neoplasias de la Mama/patología , Femenino , Predisposición Genética a la Enfermedad/genética , Variación Genética/genética , Estudio de Asociación del Genoma Completo , Genotipo , Humanos , Leucocitos/patología , Leucocitos Mononucleares , Metástasis Linfática/genética , Metástasis Linfática/patología , Persona de Mediana Edad , Estadificación de Neoplasias , Polimorfismo de Nucleótido Simple/genética
13.
Int J Mol Sci ; 22(1)2020 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-33374749

RESUMEN

Gasoline engine emissions have been classified as possibly carcinogenic to humans and represent a significant health risk. In this study, we used MucilAir™, a three-dimensional (3D) model of the human airway, and BEAS-2B, cells originating from the human bronchial epithelium, grown at the air-liquid interface to assess the toxicity of ordinary gasoline exhaust produced by a direct injection spark ignition engine. The transepithelial electrical resistance (TEER), production of mucin, and lactate dehydrogenase (LDH) and adenylate kinase (AK) activities were analyzed after one day and five days of exposure. The induction of double-stranded DNA breaks was measured by the detection of histone H2AX phosphorylation. Next-generation sequencing was used to analyze the modulation of expression of the relevant 370 genes. The exposure to gasoline emissions affected the integrity, as well as LDH and AK leakage in the 3D model, particularly after longer exposure periods. Mucin production was mostly decreased with the exception of longer BEAS-2B treatment, for which a significant increase was detected. DNA damage was detected after five days of exposure in the 3D model, but not in BEAS-2B cells. The expression of CYP1A1 and GSTA3 was modulated in MucilAir™ tissues after 5 days of treatment. In BEAS-2B cells, the expression of 39 mRNAs was affected after short exposure, most of them were upregulated. The five days of exposure modulated the expression of 11 genes in this cell line. In conclusion, the ordinary gasoline emissions induced a toxic response in MucilAir™. In BEAS-2B cells, the biological response was less pronounced, mostly limited to gene expression changes.


Asunto(s)
Bronquios/citología , Células Epiteliales/efectos de los fármacos , Emisiones de Vehículos/toxicidad , Adenilato Quinasa/metabolismo , Células Cultivadas , Roturas del ADN de Doble Cadena , Impedancia Eléctrica , Células Epiteliales/metabolismo , Humanos , L-Lactato Deshidrogenasa/metabolismo , Mucinas/metabolismo , Pruebas de Toxicidad/métodos , Transcriptoma
14.
Nanomaterials (Basel) ; 10(12)2020 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-33291323

RESUMEN

Human data concerning exposure to nanoparticles are very limited, and biomarkers for monitoring exposure are urgently needed. In a follow-up of a 2016 study in a nanocomposites plant, in which only exhaled breath condensate (EBC) was examined, eight markers of oxidative stress were analyzed in three bodily fluids, i.e., EBC, plasma and urine, in both pre-shift and post-shift samples in 2017 and 2018. Aerosol exposures were monitored. Mass concentration in 2017 was 0.351 mg/m3 during machining, and 0.179 and 0.217 mg/m3 during machining and welding, respectively, in 2018. In number concentrations, nanoparticles formed 96%, 90% and 59%, respectively. In both years, pre-shift elevations of 50.0% in EBC, 37.5% in plasma and 6.25% in urine biomarkers were observed. Post-shift elevation reached 62.5% in EBC, 68.8% in plasma and 18.8% in urine samples. The same trend was observed in all biological fluids. Individual factors were responsible for the elevation of control subjects' afternoon vs. morning markers in 2018; all were significantly lower compared to those of workers. Malondialdehyde levels were always acutely shifted, and 8-hydroxy-2-deoxyguanosine levels best showed chronic exposure effect. EBC and plasma analysis appear to be the ideal fluids for bio-monitoring of oxidative stress arising from engineered nanomaterials. Potential late effects need to be targeted and prevented, as there is a similarity of EBC findings in patients with silicosis and asbestosis.

15.
Medicina (Kaunas) ; 56(10)2020 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-33096932

RESUMEN

Background and objectives: The impact of cesarean and vaginal delivery on cognitive development was analyzed in 5 year old children. Materials and Methods: Two cohorts of 5 year old children born in the years 2013 and 2014 in Karvina (Northern Moravia) and Ceske Budejovice (Southern Bohemia) were studied for their cognitive development related to vaginal (n = 117) and cesarean types of delivery (n = 51). The Bender Visual Motor Gestalt Test (BG test) and the Raven Colored Progressive Matrices (RCPM test) were used as psychological tests. Results: In the comparison of vaginal delivery vs. cesarean section, the children delivered by cesarean section scored lower and, therefore, achieved poorer performance in cognitive tests compared to those born by vaginal delivery, as shown in the RCPM (p < 0.001) and in the BG test (p < 0.001). When mothers' education level was considered, the children whose mothers achieved a university degree scored higher in both the RCPM test (p < 0.001) and the BG test (p < 0.01) compared to the children of mothers with lower secondary education. When comparing mothers with a university degree to those with higher secondary education, there was a significant correlation between level of education and score achieved in the RCPM test (p < 0.001), but not in the BG test. Conclusions: According to our findings, the mode of delivery seems to have a significant influence on performance in psychological cognitive tests in 5 year old children in favor of those who were born by vaginal delivery. Since cesarean-born children scored notably below vaginally born children, it appears possible that cesarean delivery may have a convincingly adverse effect on children's further cognitive development.


Asunto(s)
Cesárea , Parto Obstétrico , Preescolar , Femenino , Humanos , Madres , Pruebas Neuropsicológicas , Embarazo , Pruebas Psicológicas
16.
Int J Mol Sci ; 21(19)2020 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-32992730

RESUMEN

The exposure of living organisms to environmental stress triggers defensive responses resulting in the activation of protective processes. Whenever the exposure occurs at low doses, defensive effects overwhelm the adverse effects of the exposure; this adaptive situation is referred to as "hormesis". Environmental, physical, and nutritional hormetins lead to the stimulation and strengthening of the maintenance and repair systems in cells and tissues. Exercise, heat, and irradiation are examples of physical hormetins, which activate heat shock-, DNA repair-, and anti-oxidative-stress responses. The health promoting effect of many bio-actives in fruits and vegetables can be seen as the effect of mildly toxic compounds triggering this adaptive stimulus. Numerous studies indicate that living organisms possess the ability to adapt to adverse environmental conditions, as exemplified by the fact that DNA damage and gene expression profiling in populations living in the environment with high levels of air pollution do not correspond to the concentrations of pollutants. The molecular mechanisms of the hormetic response include modulation of (a) transcription factor Nrf2 activating the synthesis of glutathione and the subsequent protection of the cell; (b) DNA methylation; and (c) microRNA. These findings provide evidence that hormesis is a toxicological event, occurring at low exposure doses to environmental stressors, having the benefit for the maintenance of a healthy status.


Asunto(s)
Adaptación Fisiológica , Epigénesis Genética , Hormesis , Estrés Fisiológico , Animales , Daño del ADN , Regulación de la Expresión Génica , Humanos , Estrés Oxidativo
17.
Int J Mol Sci ; 21(13)2020 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-32635498

RESUMEN

This study presents a toxicological evaluation of two types of carbon dots (CD), similar in size (<10 nm) but differing in surface charge. Whole-genome mRNA and miRNA expression (RNAseq), as well as gene-specific DNA methylation changes, were analyzed in human embryonic lung fibroblasts (HEL 12469) after 4 h and 24 h exposure to concentrations of 10 and 50 µg/mL (for positive charged CD; pCD) or 10 and 100 µg/mL (for negative charged CD, nCD). The results showed a distinct response for the tested nanomaterials (NMs). The exposure to pCD induced the expression of a substantially lower number of mRNAs than those to nCD, with few commonly differentially expressed genes between the two CDs. For both CDs, the number of deregulated mRNAs increased with the dose and exposure time. The pathway analysis revealed a deregulation of processes associated with immune response, tumorigenesis and cell cycle regulation, after exposure to pCD. For nCD treatment, pathways relating to cell proliferation, apoptosis, oxidative stress, gene expression, and cycle regulation were detected. The expression of miRNAs followed a similar pattern: more pronounced changes after nCD exposure and few commonly differentially expressed miRNAs between the two CDs. For both CDs the pathway analysis based on miRNA-mRNA interactions, showed a deregulation of cancer-related pathways, immune processes and processes involved in extracellular matrix interactions. DNA methylation was not affected by exposure to any of the two CDs. In summary, although the tested CDs induced distinct responses on the level of mRNA and miRNA expression, pathway analyses revealed a potential common biological impact of both NMs independent of their surface charge.


Asunto(s)
Carbono/farmacología , Metilación de ADN/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Expresión Génica/efectos de los fármacos , Pulmón/efectos de los fármacos , Apoptosis/efectos de los fármacos , Apoptosis/genética , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Células Cultivadas , Metilación de ADN/genética , Matriz Extracelular/genética , Expresión Génica/genética , Perfilación de la Expresión Génica/métodos , Humanos , MicroARNs/genética , Neoplasias/genética , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/genética , ARN Mensajero/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética
18.
Mutagenesis ; 35(4): 331-340, 2020 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-32701136

RESUMEN

The extensive development of nanotechnologies and nanomaterials poses a number of questions to toxicologists about the potential health risks of exposure to nanoparticles (NP). In this study, we analysed DNA damage in the leukocytes of 20 workers who were long-term exposed (18 ± 10 years) to NP in their working environment. Blood samples were collected in September 2016, before and after a shift, to assess (i) the chronic effects of NP on DNA (pre-shift samples) and (ii) the acute effects of exposure during the shift (the difference between pre- and post-shift samples). The samples from matched controls were taken in parallel with workers before the shift. Leukocytes were isolated from heparinised blood on a Ficoll gradient. The enzyme-modified comet assay (DNA formamido-pyrimidine-glycosylase and endonuclease III) demonstrated a considerable increase of both single- and double-strand breaks in DNA (DNA-SB) and oxidised bases when compared with the controls (2.4× and 2×, respectively). Acute exposure induced a further increase of DNA-SB. The welding and smelting of nanocomposites represented a higher genotoxic risk than milling and grinding of nanocomposite surfaces. Obesity appeared to be a factor contributing to an increased risk of oxidative damage to DNA. The data also indicated a higher susceptibility of males vs. females to NP exposure. The study was repeated in September 2017. The results exhibited similar trend, but the levels of DNA damage in the exposed subjects were lower compared to previous year. This was probably associated with lower exposure to NP in consequence of changes in nanomaterial composition and working operations. The further study involving also monitoring of personal exposures to NP is necessary to identify (i) the main aerosol components responsible for genotoxic effects in workers handling nanocomposites and (ii) the primary cause of gender differences in response to NP action.


Asunto(s)
Daño del ADN , Leucocitos/efectos de los fármacos , Nanocompuestos/toxicidad , Exposición Profesional/efectos adversos , Adulto , Ensayo Cometa , ADN/efectos de los fármacos , ADN/metabolismo , ADN-Formamidopirimidina Glicosilasa , Desoxirribonucleasa (Dímero de Pirimidina) , Proteínas de Escherichia coli , Femenino , Humanos , Leucocitos/metabolismo , Masculino , Persona de Mediana Edad , Mutágenos , Estrés Oxidativo , Factores Sexuales , Adulto Joven
19.
Artículo en Inglés | MEDLINE | ID: mdl-32522345

RESUMEN

The aryl hydrocarbon receptor (AhR) transcription factor is activated by polycyclic aromatic hydrocarbons (PAH) and other ligands. Activated AhR binds to dioxin responsive elements (DRE) and initiates transcription of target genes, including the gene encoding prostaglandin endoperoxide synthase 2 (PTGS-2), which is also activated by the transcription factor NF-ĸB. PTGS-2 catalyzes the conversion of arachidonic acid (AA) into prostaglandins, thromboxanes or isoprostanes. 15-F2t-Isoprostane (IsoP), regarded as a universal marker of lipid peroxidation, is also induced by PAH exposure. We investigated the processes associated with lipid peroxidation in human alveolar basal epithelial cells (A549) exposed for 4 h or 24 h to model PAH (benzo[a]pyrene, BaP; 3-nitrobenzanthrone, 3-NBA) and organic extracts from ambient air particulate matter (EOM), collected in two seasons in a polluted locality. Both EOM induced the expression of CYP1A1 and CYP1B1; 24 h treatment significantly reduced PTGS-2 expression. IsoP levels decreased after both exposure periods, while the concentration of AA was not affected. The effects induced by BaP were similar to EOM except for increased IsoP levels after 4 h exposure and elevated AA concentration after 24 h treatment. In contrast, 3-NBA treatment did not induce CYP expression, had a weak effect on PTGS-2 expression, and, similar to BaP, induced IsoP levels after 4 h exposure and AA levels after 24 h treatment. All tested compounds induced the activity of NF-ĸB after the longer exposure period. In summary, our data suggest that EOM, and partly BaP, reduce lipid peroxidation by a mechanism that involves AhR-dependent inhibition of PTGS-2 expression. The effect of 3-NBA on IsoP levels is probably mediated by a different mechanism independent of AhR activation.


Asunto(s)
Células Epiteliales Alveolares/efectos de los fármacos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Mutágenos/toxicidad , Receptores de Hidrocarburo de Aril/metabolismo , Células A549 , Benzo(a)Antracenos/toxicidad , Benzo(a)pireno/toxicidad , Línea Celular Tumoral , Ciclooxigenasa 1/metabolismo , Citocromo P-450 CYP1A1/metabolismo , Humanos , FN-kappa B/metabolismo , Material Particulado/toxicidad , Hidrocarburos Policíclicos Aromáticos/toxicidad
20.
Int J Mol Sci ; 21(7)2020 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-32244494

RESUMEN

The risk of exposure to nanoparticles (NPs) has rapidly increased during the last decade due to the vast use of nanomaterials (NMs) in many areas of human life. Despite this fact, human biomonitoring studies focused on the effect of NP exposure on DNA alterations are still rare. Furthermore, there are virtually no epigenetic data available. In this study, we investigated global and gene-specific DNA methylation profiles in a group of 20 long-term (mean 14.5 years) exposed, nanocomposite, research workers and in 20 controls. Both groups were sampled twice/day (pre-shift and post-shift) in September 2018. We applied Infinium Methylation Assay, using the Infinium MethylationEPIC BeadChips with more than 850,000 CpG loci, for identification of the DNA methylation pattern in the studied groups. Aerosol exposure monitoring, including two nanosized fractions, was also performed as proof of acute NP exposure. The obtained array data showed significant differences in methylation between the exposed and control groups related to long-term exposure, specifically 341 CpG loci were hypomethylated and 364 hypermethylated. The most significant CpG differences were mainly detected in genes involved in lipid metabolism, the immune system, lung functions, signaling pathways, cancer development and xenobiotic detoxification. In contrast, short-term acute NP exposure was not accompanied by DNA methylation changes. In summary, long-term (years) exposure to NP is associated with DNA epigenetic alterations.


Asunto(s)
Metilación de ADN/efectos de los fármacos , Nanopartículas/efectos adversos , Exposición Profesional , Adulto , Anciano , Epigénesis Genética , Femenino , Genoma Humano , Humanos , Masculino , Persona de Mediana Edad , Nanocompuestos/efectos adversos , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...