Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Comput Assist Radiol Surg ; 17(12): 2221-2229, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35948765

RESUMEN

PURPOSE: Atherosclerosis plays a significant role in the initiation of coronary artery aneurysms (CAA). Although the treatment options for this kind of vascular disease are developing, there are challenges and limitations in both selecting and applying sufficient medical solutions. For surgical interventions, that are novel therapies, non-invasive specific patient-based studies could lead to obtaining more promising results. Despite medical and pathological tests, these pre-surgical investigations require special biomedical and computer-aided engineering techniques. In this study, a machine learning (ML) model is proposed for the non-invasive detection of atherosclerotic CAA for the first time. METHODS: The database for study was collected from hemodynamic analysis and computed tomography angiography (CTA) of 80 CAAs from 61 patients, approved by the Institutional Review Board (IRB). The proposed ML model is formulated for learning by a one-class support vector machine (1SVM) that is a field of ML to provide techniques for outlier and anomaly detection. RESULTS: The applied ML algorithms yield reasonable results with high and significant accuracy in designing a procedure for the non-invasive diagnosis of atherosclerotic aneurysms. This proposed method could be employed as a unique artificial intelligence (AI) tool for assurance in clinical decision-making procedures for surgical intervention treatment methods in the future. CONCLUSIONS: The non-invasive diagnosis of the atherosclerotic CAAs, which is one of the vital factors in the accomplishment of endovascular surgeries, is important due to some clinical decisions. Although there is no accurate tool for managing this kind of diagnosis, an ML model that can decrease the probability of endovascular surgical failures, death risk, and post-operational complications is proposed in this study. The model is able to increase the clinical decision accuracy for low-risk selection of treatment options.


Asunto(s)
Aterosclerosis , Enfermedad de la Arteria Coronaria , Humanos , Vasos Coronarios , Inteligencia Artificial , Angiografía por Tomografía Computarizada/métodos , Aprendizaje Automático , Angiografía Coronaria/métodos , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Enfermedad de la Arteria Coronaria/cirugía
2.
Biomech Model Mechanobiol ; 21(5): 1393-1406, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35697948

RESUMEN

The biomechanical and hemodynamic effects of atherosclerosis on the initiation of intracranial aneurysms (IA) are not yet clearly discovered. Also, studies for the observation of hemodynamic variation due to atherosclerotic stenosis and its impact on arterial remodeling and aneurysm genesis remain a controversial field of vascular engineering. The majority of studies performed are relevant to computational fluid dynamic (CFD) simulations. CFD studies are limited in consideration of blood and arterial tissue interactions. In this work, the interaction of the blood and vessel tissue because of atherosclerotic occlusions is studied by developing a fluid and structure interaction (FSI) analysis for the first time. The FSI presents a semi-realistic simulation environment to observe how the blood and vessels' structural interactions can increase the accuracy of the biomechanical study results. In the first step, many different intracranial vessels are modeled for an investigation of the biomechanical and hemodynamic effects of atherosclerosis in arterial tissue remodeling. Three physiological conditions of an intact artery, the artery with intracranial atherosclerosis (ICAS), and an atherosclerotic aneurysm (ACA) are employed in the models with required assumptions. Finally, the obtained outputs are studied with comparative and statistical analyses according to the intact model in a normal physiological condition. The results show that existing occlusions in the cross-sectional area of the arteries play a determinative role in changing the hemodynamic behavior of the arterial segments. The undesirable variations in blood velocity and pressure throughout the vessels increase the risk of arterial tissue remodeling and aneurysm formation.


Asunto(s)
Aterosclerosis , Aneurisma Intracraneal , Humanos , Modelos Cardiovasculares , Hemodinámica , Arterias/fisiología , Simulación por Computador , Hidrodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...