Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ecol Evol ; 7(9): 3132-3142, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28480012

RESUMEN

Many marine protists form resting stages that can remain viable in coastal sediments for several decades. Their long-term survival offers the possibility to explore the impact of changes in environmental conditions on population dynamics over multidecadal time scales. Resting stages of the phototrophic dinoflagellate Pentapharsodinium dalei were isolated and germinated from five layers in dated sediment cores from Koljö fjord, Sweden, spanning ca. 1910-2006. This fjord has, during the last century, experienced environmental fluctuations linked to hydrographic variability mainly driven by the North Atlantic Oscillation. Population genetic analyses based on six microsatellite markers revealed high genetic diversity and suggested that samples belonged to two clusters of subpopulations that have persisted for nearly a century. We observed subpopulation shifts coinciding with changes in hydrographic conditions. The large degree of genetic diversity and the potential for both fluctuation and recovery over longer time scales documented here, may help to explain the long-term success of aquatic protists that form resting stages.

2.
Mol Ecol ; 25(12): 2790-804, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27105397

RESUMEN

Cytisus scoparius is a global invasive species that affects local flora and fauna at the intercontinental level. Its natural distribution spans across Europe, but seeds have also been moved among countries, mixing plants of native and non-native genetic origins. Hybridization between the introduced and native gene pool is likely to threaten both the native gene pool and the local flora. In this study, we address the potential threat of invasive C. scoparius to local gene pools in vulnerable heathlands. We used nuclear single nucleotide polymorphic (SNP) and simple sequence repeat (SSR) markers together with plastid SSR and indel markers to investigate the level and direction of gene flow between invasive and native heathland C. scoparius. Analyses of population structures confirmed the presence of two gene pools: one native and the other invasive. The nuclear genome of the native types was highly introgressed with the invasive genome, and we observed advanced-generation hybrids, suggesting that hybridization has been occurring for several generations. There is asymmetrical gene flow from the invasive to the native gene pool, which can be attributed to higher fecundity in the invasive individuals, measured by the number of flowers and seed pods. Strong spatial genetic structure in plastid markers and weaker structure in nuclear markers suggest that seeds spread over relatively short distances and that gene flow over longer distances is mainly facilitated by pollen dispersal. We further show that the growth habits of heathland plants become more vigorous with increased introgression from the invaders. Implications of the findings are discussed in relation to future management of invading C. scoparius.


Asunto(s)
Cytisus/genética , Pool de Genes , Hibridación Genética , Especies Introducidas , Conservación de los Recursos Naturales , ADN de Plantas/genética , Dinamarca , Ecosistema , Flujo Génico , Genética de Población , Genoma de Planta , Repeticiones de Microsatélite , Modelos Genéticos , Polen/genética , Polimorfismo de Nucleótido Simple , Semillas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...