Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Signal Behav ; 19(1): 2362518, 2024 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38836385

RESUMEN

Cotton is an important agricultural crop to many regions across the globe but is sensitive to low-temperature exposure. The activity of the enzyme SENSITIVE TO FREEZING 2 (SFR2) improves cold tolerance of plants and produces trigalactosylsyldiacylglycerol (TGDG), but its role in cold sensitive plants, such as cotton remains unknown. Recently, it was reported that cotton SFR2 produced very little TGDG under normal and cold conditions. Here, we investigate cotton SFR2 activation and TGDG production. Using multiple approaches in the native system and transformation into Arabidopsis thaliana, as well as heterologous yeast expression, we provide evidence that cotton SFR2 activates differently than previously found among other plant species. We conclude with the hypothesis that SFR2 in cotton is not activated in a similar manner regarding acidification or freezing like Arabidopsis and that other regions of SFR2 protein are critical for activation of the enzyme than previously reported.


Asunto(s)
Arabidopsis , Frío , Gossypium , Gossypium/genética , Gossypium/metabolismo , Gossypium/fisiología , Arabidopsis/genética , Arabidopsis/fisiología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Estrés Fisiológico , Respuesta al Choque por Frío/fisiología , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente
3.
J Exp Bot ; 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38808657

RESUMEN

Chilling stress threatens plant growth and development, particularly affecting membrane fluidity and cellular integrity. Understanding plant membrane responses to chilling stress is important for unraveling the molecular mechanisms of stress tolerance. Whereas core transcriptional responses to chilling stress and stress tolerance are conserved across species, the associated changes in membrane lipids appear to be less conserved, as which lipids are affected by chilling stress varies by species. Here, we investigated changes in gene expression and membrane lipids in response to chilling stress during one 24 hour cycle in chilling-tolerant foxtail millet (Setaria italica), and chilling-sensitive sorghum (Sorghum bicolor), and Urochloa (browntop signal grass, Urochloa fusca, lipids only), leveraging their evolutionary relatedness and differing levels of chilling-stress tolerance. We show that most chilling-induced lipid changes are conserved across the three species, while we observed distinct, time-specific responses in chilling-tolerant foxtail millet, indicating the presence of a finely orchestrated adaptive mechanism. We detected rhythmicity in lipid responses to chilling stress in the three grasses, which were also present in Arabidopsis (Arabidopsis thaliana), suggesting the conservation of rhythmic patterns across species and highlighting the importance of accounting for time of day. When integrating lipid datasets with gene expression profiles, we identified potential candidate genes that showed corresponding transcriptional changes in response to chilling stress, providing insights into the differences in regulatory mechanisms between chilling-sensitive sorghum and chilling-tolerant foxtail millet.

4.
Plant Physiol ; 195(1): 685-697, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38386316

RESUMEN

The accumulation of triacylglycerol (TAG) in vegetative tissues is necessary to adapt to changing temperatures. It has been hypothesized that TAG accumulation is required as a storage location for maladaptive membrane lipids. The TAG acyltransferase family has five members (DIACYLGLYCEROL ACYLTRANSFERSE1/2/3 and PHOSPHOLIPID:DIACYLGLYCEROL ACYLTRANSFERASE1/2), and their individual roles during temperature challenges have either been described conflictingly or not at all. Therefore, we used Arabidopsis (Arabidopsis thaliana) loss of function mutants in each acyltransferase to investigate the effects of temperature challenge on TAG accumulation, plasma membrane integrity, and temperature tolerance. All mutants were tested under one high- and two low-temperature regimens, during which we quantified lipids, assessed temperature sensitivity, and measured plasma membrane electrolyte leakage. Our findings revealed reduced effectiveness in TAG production during at least one temperature regimen for all acyltransferase mutants compared to the wild type, resolved conflicting roles of pdat1 and dgat1 by demonstrating their distinct temperature-specific actions, and uncovered that plasma membrane integrity and TAG accumulation do not always coincide, suggesting a multifaceted role of TAG beyond its conventional lipid reservoir function during temperature stress.


Asunto(s)
Aciltransferasas , Proteínas de Arabidopsis , Arabidopsis , Frío , Diacilglicerol O-Acetiltransferasa , Triglicéridos , Arabidopsis/genética , Arabidopsis/enzimología , Diacilglicerol O-Acetiltransferasa/metabolismo , Diacilglicerol O-Acetiltransferasa/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Triglicéridos/metabolismo , Aciltransferasas/metabolismo , Aciltransferasas/genética , Membrana Celular/metabolismo , Calor , Regulación de la Expresión Génica de las Plantas , Mutación/genética
5.
Mol Plant Microbe Interact ; 37(1): 62-71, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37889205

RESUMEN

Microtubule-associated protein 65-1 (MAP65-1) protein plays an essential role in plant cellular dynamics through impacting stabilization of the cytoskeleton by serving as a crosslinker of microtubules. The role of MAP65-1 in plants has been associated with phenotypic outcomes in response to various environmental stresses. The Arabidopsis MAP65-1 (AtMAP65-1) is a known virulence target of plant bacterial pathogens and is thus a component of plant immunity. Soybean events were generated that carry transgenic alleles for both AtMAP65-1 and GmMAP65-1, the soybean AtMAP65-1 homolog, under control of cauliflower mosaic virus 35S promoter. Both AtMAP65-1 and GmMAP65-1 transgenic soybeans are more resistant to challenges by the soybean bacterial pathogen Pseudomonas syringae pv. glycinea and the oomycete pathogen Phytophthora sojae, but not the soybean cyst nematode, Heterodera glycines. Soybean plants expressing AtMAP65-1 and GmMAP65-1 also display a tolerance to the herbicide oryzalin, which has a mode of action to destabilize microtubules. In addition, GmMAP65-1-expressing soybean plants show reduced cytosol ion leakage under freezing conditions, hinting that ectopic expression of GmMAP65-1 may enhance cold tolerance in soybean. Taken together, overexpression of AtMAP65-1 and GmMAP65-1 confers tolerance of soybean plants to various biotic and abiotic stresses. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Glycine max/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Microtúbulos/metabolismo , Enfermedades de las Plantas/microbiología , Regulación de la Expresión Génica de las Plantas
6.
Biochem Mol Biol Educ ; 51(6): 685-690, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37681713

RESUMEN

Many STEM disciplines are underrepresented to High School students. This is problematic as many students' decisions for college are shaped by their experiences and achievements in high school. Short content-oriented modules have been shown to encourage science identity and otherwise benefit the students' learning. Following the ASBMB's outreach protocol, we developed a short content-oriented module aimed at a high school biology classroom. Students interacted with 3D models of DNA and transcription factors while exploring structure-function relationships and introductory biochemistry topics. The high school teacher was impressed with the students' response to the module, specifically the ease with which students learned, their enthusiasm, and their recall of the experience. We provide all materials necessary to use this module, including student worksheet and printable model coordinates. We encourage both high school instructors and professional biochemists to consider similar module using physical models.


Asunto(s)
Aprendizaje , Estudiantes , Humanos , Instituciones Académicas , Universidades , Biología , Curriculum
7.
J Exp Bot ; 74(17): 5405-5417, 2023 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-37357909

RESUMEN

Severe cold, defined as a damaging cold beyond acclimation temperatures, has unique responses, but the signaling and evolution of these responses are not well understood. Production of oligogalactolipids, which is triggered by cytosolic acidification in Arabidopsis (Arabidopsis thaliana), contributes to survival in severe cold. Here, we investigated oligogalactolipid production in species from bryophytes to angiosperms. Production of oligogalactolipids differed within each clade, suggesting multiple evolutionary origins of severe cold tolerance. We also observed greater oligogalactolipid production in control samples than in temperature-challenged samples of some species. Further examination of representative species revealed a tight association between temperature, damage, and oligogalactolipid production that scaled with the cold tolerance of each species. Based on oligogalactolipid production and transcript changes, multiple angiosperm species share a signal of oligogalactolipid production initially described in Arabidopsis, namely cytosolic acidification. Together, these data suggest that oligogalactolipid production is a severe cold response that originated from an ancestral damage response that remains in many land plant lineages and that cytosolic acidification may be a common signaling mechanism for its activation.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Magnoliopsida , Arabidopsis/metabolismo , Frío , Proteínas de Arabidopsis/metabolismo , Temperatura , Magnoliopsida/metabolismo , Aclimatación/fisiología , Regulación de la Expresión Génica de las Plantas
9.
Methods Mol Biol ; 2295: 15-27, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34047969

RESUMEN

Glycerolipids form the largest fraction of all membrane lipids and their composition changes quickly during plant development, the diurnal cycle, and in response to hormones and biotic or abiotic stress. A challenge to accurate glycerolipid measurement is that lipid-degrading enzymes tend to remain active during extraction, and special care must be taken to ensure their inactivation. Multiple extraction methods have arisen to cope with this challenge but only a few comparative studies are available in the literature. Here we compare three commonly used methods for lipase inactivation and lipid extraction from two different plant tissues. The first method employs formic acid in an organic solvent for inactivation followed by immediate separation of the organic phase, while the second uses the same acidic solvent, but expands the time of lipase inactivation and lipid extraction by incubation at low temperature. The third method includes a boiling step of the tissue in isopropanol for enzyme inactivation. The first method is the fastest for lab conditions with few samples, the second and third are convenient with large sample numbers, including field work. The first two methods are commonly followed by lipid derivatization and gas chromatography, while the third avoids acids and is thus preferable for lipidomics approaches. We directly compare the methods on both Arabidopsis thaliana and Sorghum bicolor leaf tissues and measure the relative abundances of glycerolipid species formed by lipase activity. We conclude that each method provides intact lipid extracts of similar quality, if performed according to the protocols described below.


Asunto(s)
Lípidos/aislamiento & purificación , Extracción Líquido-Líquido/métodos , Plantas/metabolismo , Arabidopsis/metabolismo , Cromatografía de Gases , Cromatografía Líquida de Alta Presión/métodos , Glicerol/metabolismo , Lipasa/metabolismo , Lipidómica , Lípidos/análisis , Espectrometría de Masas/métodos , Lípidos de la Membrana/química , Membranas/química , Hojas de la Planta/química
10.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33658387

RESUMEN

Although genome-sequence assemblies are available for a growing number of plant species, gene-expression responses to stimuli have been cataloged for only a subset of these species. Many genes show altered transcription patterns in response to abiotic stresses. However, orthologous genes in related species often exhibit different responses to a given stress. Accordingly, data on the regulation of gene expression in one species are not reliable predictors of orthologous gene responses in a related species. Here, we trained a supervised classification model to identify genes that transcriptionally respond to cold stress. A model trained with only features calculated directly from genome assemblies exhibited only modest decreases in performance relative to models trained by using genomic, chromatin, and evolution/diversity features. Models trained with data from one species successfully predicted which genes would respond to cold stress in other related species. Cross-species predictions remained accurate when training was performed in cold-sensitive species and predictions were performed in cold-tolerant species and vice versa. Models trained with data on gene expression in multiple species provided at least equivalent performance to models trained and tested in a single species and outperformed single-species models in cross-species prediction. These results suggest that classifiers trained on stress data from well-studied species may suffice for predicting gene-expression patterns in related, less-studied species with sequenced genomes.


Asunto(s)
Respuesta al Choque por Frío , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Modelos Genéticos , Poaceae , Transcripción Genética , Poaceae/genética , Poaceae/metabolismo , Especificidad de la Especie
11.
mSystems ; 6(2)2021 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-33727394

RESUMEN

Primary and secondary metabolites exuded from roots are key drivers of root-soil microbe interactions that contribute to the structure and function of microbial communities. Studies with model plants have begun to reveal the complex interactions between root exudates and soil microbes, but little is known about the influence of specialized exudates from crop plants. The aims of this work were to understand whether sorgoleone, a unique lipophilic secondary benzoquinone exuded only from the root hairs of sorghum, influences belowground microbial community structure in the field, to assess the effect of purified sorgoleone on the cultured bacteria from field soils, and to determine whether sorgoleone inhibits nitrification under field conditions. Studies were conducted comparing wild-type sorghum and lines with genetically reduced sorgoleone exudation. In the soil near roots and rhizosphere, sorgoleone influenced microbial community structure as measured by ß-diversity and network analysis. Under greenhouse conditions, the soil nitrogen content was an important factor in determining the impacts of sorgoleone. Sorgoleone delayed the formation of the bacterial and archaeal networks early in plant development and only inhibited nitrification at specific sampling times under field conditions. Sorgoleone was also shown to both inhibit and promote cultured bacterial isolate growth in laboratory tests. These findings provide new insights into the role of secondary metabolites in shaping the composition and function of the sorghum root-associated bacterial microbiomes. Understanding how root exudates modify soil microbiomes may potentially unlock an important tool for enhancing crop sustainability and yield in our changing environment.IMPORTANCE Plant roots exude a complex mixture of metabolites into the rhizosphere. Primary and secondary metabolites exuded from roots are key drivers of root-soil microbe interactions that contribute to the structure and function of microbial communities in agricultural and natural ecosystems. Previous work on plant root exudates and their influence on soil microbes has mainly been restricted to model plant species. Plant are a diverse group of organisms and produce a wide array of different secondary metabolites. Therefore, it is important to go beyond studies of model plants to fully understand the diverse repertoire of root exudates in crop plant species that feed human populations. Extending studies to a wider array of root exudates will provide a more comprehensive understanding of how the roots of important food crops interact with highly diverse soil microbial communities. This will provide information that could lead to tailoring root exudates for the development of more beneficial plant-soil microbe interactions that will benefit agroecosystem productivity.

12.
CBE Life Sci Educ ; 20(1): ar13, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33635127

RESUMEN

Understanding metabolic function requires knowledge of the dynamics, interdependence, and regulation of metabolic networks. However, multiple professional societies have recognized that most undergraduate biochemistry students acquire only a surface-level understanding of metabolism. We hypothesized that guiding students through interactive computer simulations of metabolic systems would increase their ability to recognize how individual interactions between components affect the behavior of a system under different conditions. The computer simulations were designed with an interactive activity (i.e., module) that used the predict-observe-explain model of instruction to guide students through a process in which they iteratively predict outcomes, test their predictions, modify the interactions of the system, and then retest the outcomes. We found that biochemistry students using modules performed better on metabolism questions compared with students who did not use the modules. The average learning gain was 8% with modules and 0% without modules, a small to medium effect size. We also confirmed that the modules did not create or reinforce a gender bias. Our modules provide instructors with a dynamic, systems-driven approach to help students learn about metabolic regulation and equip students with important cognitive skills, such as interpreting and analyzing simulation results, and technical skills, such as building and simulating computer-based models.


Asunto(s)
Sexismo , Estudiantes , Bioquímica , Comprensión , Femenino , Humanos , Aprendizaje , Masculino , Enseñanza
13.
Biochem Mol Biol Educ ; 49(2): 167-188, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32833339

RESUMEN

Our climate is changing due to anthropogenic emissions of greenhouse gases from the production and use of fossil fuels. Present atmospheric levels of CO2 were last seen 3 million years ago, when planetary temperature sustained high Arctic camels. As scientists and educators, we should feel a professional responsibility to discuss major scientific issues like climate change, and its profound consequences for humanity, with students who look up to us for knowledge and leadership, and who will be most affected in the future. We offer simple to complex backgrounds and examples to enable and encourage biochemistry educators to routinely incorporate this most important topic into their classrooms.


Asunto(s)
Cambio Climático , Curriculum , Biología Molecular/educación , Humanos
15.
Biochem Mol Biol Educ ; 48(4): 356-368, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32590880

RESUMEN

Ensuring undergraduate students become proficient in relating protein structure to biological function has important implications. With current two-dimensional (2D) methods of teaching, students frequently develop misconceptions, including that proteins contain a lot of empty space, that bond angles for different amino acids can rotate equally, and that product inhibition is equivalent to allostery. To help students translate 2D images to 3D molecules and assign biochemical meaning to physical structures, we designed three 3D learning modules consisting of interactive activities with 3D printed models for amino acids, proteins, and allosteric regulation with coordinating pre- and post-assessments. Module implementation resulted in normalized learning gains on module-based assessments of 30% compared to 17% in a no-module course and normalized learning gains on a comprehensive assessment of 19% compared to 3% in a no-module course. This suggests that interacting with these modules helps students develop an improved ability to visualize and retain molecular structure and function.


Asunto(s)
Bases de Datos de Proteínas , Educación de Pregrado en Medicina/métodos , Imagenología Tridimensional/métodos , Biología Molecular/educación , Proteínas/química , Proteínas/metabolismo , Entrenamiento Simulado/métodos , Evaluación Educacional , Femenino , Humanos , Masculino , Modelos Anatómicos , Conformación Proteica , Relación Estructura-Actividad
16.
Plant Signal Behav ; 14(9): 1629270, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31189422

RESUMEN

Chloroplasts adapt to freezing and other abiotic stresses in part by modifying their membranes. One key-remodeling enzyme is SENSITIVE TO FREEZING2 (SFR2). SFR2 is unusual because it does not respond to initial cold stress or cold acclimation, instead it responds during freezing conditions in Arabidopsis. This response has been shown to be sensitive to cytosolic acidification. The unique lipid products of SFR2 have also been detected in response to non-freezing stresses, but what causes SFR2 to respond in these stresses is unknown. Here, we investigate protoplast isolation as a representative of wounding stress. We show that SFR2 oligogalactolipid products accumulate during protoplast isolation. Notably, we show that protoplast cytosol is acidified during isolation. Modification of the buffers reduces oligogalactolipid accumulation, while prolonged incubation in the isolated state increases it. We conclude that SFR2 activation during protoplast isolation correlates with cytosolic acidification, implying that all SFR2 activation may be dependent on cytosolic acidification. We also conclude that protoplasts can be more gently isolated, reducing their stress.


Asunto(s)
Ácidos/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cloroplastos/metabolismo , Citosol/metabolismo , Protoplastos/metabolismo , Estrés Fisiológico , beta-Glucosidasa/metabolismo , Galactolípidos/metabolismo , Concentración de Iones de Hidrógeno
17.
Plant J ; 99(5): 965-977, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31069858

RESUMEN

Artificial selection has produced varieties of domesticated maize that thrive in temperate climates around the world. However, the direct progenitor of maize, teosinte, is indigenous only to a relatively small range of tropical and subtropical latitudes and grows poorly or not at all outside of this region. Tripsacum, a sister genus to maize and teosinte, is naturally endemic to the majority of areas in the western hemisphere where maize is cultivated. A full-length reference transcriptome for Tripsacum dactyloides generated using long-read Iso-Seq data was used to characterize independent adaptation to temperate climates in this clade. Genes related to phospholipid biosynthesis, a critical component of cold acclimation in other cold-adapted plant lineages, were enriched among those genes experiencing more rapid rates of protein sequence evolution in T. dactyloides. In contrast with previous studies of parallel selection, we find that there is a significant overlap between the genes that were targets of artificial selection during the adaptation of maize to temperate climates and those that were targets of natural selection in temperate-adapted T. dactyloides. Genes related to growth, development, response to stimulus, signaling, and organelles were enriched in the set of genes identified as both targets of natural and artificial selection.


Asunto(s)
Aclimatación/fisiología , Poaceae/genética , Poaceae/fisiología , Selección Genética/fisiología , Zea mays/genética , Zea mays/fisiología , Frío , Genes de Plantas/genética , Antígenos HLA-G , Redes y Vías Metabólicas , Proteínas de Plantas/genética , Estrés Fisiológico , Transcriptoma
18.
Biochem Mol Biol Educ ; 47(3): 303-317, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30897273

RESUMEN

Understanding the relationship between molecular structure and function represents an important goal of undergraduate life sciences. Although evidence suggests that handling physical models supports gains in student understanding of structure-function relationships, such models have not been widely implemented in biochemistry classrooms. Three-dimensional (3D) printing represents an emerging cost-effective means of producing molecular models to help students investigate structure-function concepts. We developed three interactive learning modules with dynamic 3D printed models to help biochemistry students visualize biomolecular structures and address particular misconceptions. These modules targeted specific learning objectives related to DNA and RNA structure, transcription factor-DNA interactions, and DNA supercoiling dynamics. We also designed accompanying assessments to gauge student learning. Students responded favorably to the modules and showed normalized learning gains of 49% with respect to their ability to understand and relate molecular structures to biochemical functions. By incorporating accurate 3D printed structures, these modules represent a novel advance in instructional design for biomolecular visualization. We provide instructors with the materials necessary to incorporate each module in the classroom, including instructions for acquiring and distributing the models, activities, and assessments. © 2019 International Union of Biochemistry and Molecular Biology, 47(3):303-317, 2019.


Asunto(s)
Comprensión , ADN/química , ADN/metabolismo , Aprendizaje , Biología Molecular/educación , Impresión Tridimensional , Humanos , Conformación de Ácido Nucleico , Relación Estructura-Actividad , Estudiantes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...