Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Bioeng Biotechnol ; 9: 752253, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34957064

RESUMEN

Sex-ratio distorters based on X-chromosome shredding are more efficient than sterile male releases for population suppression. X-shredding is a form of sex distortion that skews spermatogenesis of XY males towards the preferential transmission of Y-bearing gametes, resulting in a higher fraction of sons than daughters. Strains harboring X-shredders on autosomes were first developed in the malaria mosquito Anopheles gambiae, resulting in strong sex-ratio distortion. Since autosomal X-shredders are transmitted in a Mendelian fashion and can be selected against, their frequency in the population declines once releases are halted. However, unintended transfer of X-shredders to the Y-chromosome could produce an invasive meiotic drive element, that benefits from its biased transmission to the predominant male-biased offspring and its effective shielding from female negative selection. Indeed, linkage to the Y-chromosome of an active X-shredder instigated the development of the nuclease-based X-shredding system. Here, we analyze mechanisms whereby an autosomal X-shredder could become unintentionally Y-linked after release by evaluating the stability of an established X-shredder strain that is being considered for release, exploring its potential for remobilization in laboratory and wild-type genomes of An. gambiae and provide data regarding expression on the mosquito Y-chromosome. Our data suggest that an invasive X-shredder resulting from a post-release movement of such autosomal transgenes onto the Y-chromosome is unlikely.

2.
PLoS One ; 15(11): e0241492, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33170865

RESUMEN

As a means of obtaining reproducible and accurate numbers of larvae for laboratory rearing, we tested a large-particle flow-cytometer type device called the 'Automated Particle Counter' (APC). The APC is a gravity-fed, self-contained unit that detects changes in light intensity caused by larvae passing the detector in a water stream and controls dispensing by stopping the flow when the desired number has been reached. We determined the accuracy (number dispensed compared to the target value) and precision (distribution of number dispensed) of dispensing at a variety of counting sensitivity thresholds and larva throughput rates (larvae per second) using < 1-day old Anopheles gambiae and Aedes aegypti larvae. All measures were made using an APC algorithm called the 'Smoothed Z-Score' which allows the user to define how many standard deviations (Z scores) from the baseline light intensity a particle's absorbance must exceed to register a count. We dispensed a target number of 100 An. gambiae larvae using Z scores from 2.5-8 and observed no difference among them in the numbers dispensed for scores from 2.5-6, however, scores of 7 and 8 under-counted (over-dispensed) larvae. Using a Z score ≤ 6, we determined the effect of throughput rate on the accuracy of the device to dispense An. gambiae larvae. For rates ≤ 98 larvae per second, the accuracy of dispensing a target of 100 larvae was - 2.29% ± 0.72 (95% CI of the mean) with a mode of 99 (49 of 348 samples). When using a Z score of 3.5 and rates ≤ 100 larvae per second, the accuracy of dispensing a target of 100 Ae. aegypti was - 2.43% ± 1.26 (95% CI of the mean) with a mode of 100 (6 of 42 samples). No effect on survival was observed on the number of An. gambiae first stage larvae that reached adulthood as a function of dispensing.


Asunto(s)
Anopheles/fisiología , Citometría de Flujo/instrumentación , Laboratorios , Análisis de Varianza , Animales , Automatización , Larva , Análisis de Supervivencia
3.
Malar J ; 19(1): 236, 2020 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-32631340

RESUMEN

BACKGROUND: Marking mosquitoes is vital for mark-release-recapture and many laboratory studies, but their small size precludes the use of methods that are available for larger animals such as unique identifier tags and radio devices. Fluorescent dust is the most commonly used method to distinguish released individuals from the wild population. Numerous colours and combinations can be used, however, dust sometimes affects longevity and behaviour so alternatives that do not have these effects would contribute substantially. Rhodamine B has previously been demonstrated to be useful for marking adult Aedes aegypti males when added to the sugar meal. Unlike dust, this also marked the seminal fluid making it possible to detect matings by marked males in the spermatheca of females. Here, marking of Anopheles gambiae sensu stricto with rhodamine B and uranine was performed to estimate their potential contribution. METHODS: Two fluorescent markers, rhodamine B and uranine, were dissolved in sugar water and fed to adult An. gambiae. Concentrations that are useful for marking individuals and seminal fluid were determined. The effects on adult longevity, the durability of the marking and detection of the marker in mated females was determined. Male mating competitiveness was also evaluated. RESULTS: Rhodamine B marking in adults is detectable for at least 3 weeks, however uranine marking declines with time and at low doses can be confused with auto-fluorescence. Both can be used for marking seminal fluid which can be detected in females mated by marked males, but, again, at low concentrations uranine-marking is more easily confused with the natural fluorescence of seminal fluid. Neither dye affected mating competitiveness. CONCLUSIONS: Both markers tested could be useful for field and laboratory studies. Their use has substantial potential to contribute to a greater understanding of the bio-ecology of this important malaria vector. Rhodamine B has the advantage that it appears to be permanent and is less easily confused with auto-fluorescence. The primary limitation of both methods is that sugar feeding is necessary for marking and adults must be held for at least 2 nights to ensure all individuals are marked whereas dusts provide immediate and thorough marking.


Asunto(s)
Anopheles/fisiología , Fluoresceína/análisis , Colorantes Fluorescentes/análisis , Rodaminas/análisis , Conducta Sexual Animal , Animales , Femenino , Masculino , Mosquitos Vectores/fisiología
4.
J Med Entomol ; 56(4): 936-941, 2019 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-30924861

RESUMEN

Transgenic Anopheles gambiae Giles (Diptera: Culicidae) mosquitoes have been developed that confer sexual sterility on males that carry a transgene encoding a protein which cuts ribosomal DNA. A relevant risk concern with transgenic mosquitoes is that their capacity to transmit known pathogens could be greater than the unmodified form. In this study, the ability to develop two human pathogens in these transgenic mosquitoes carrying a homing endonuclease which is expressed in the testes was compared with its nontransgenic siblings. Infections were performed with Plasmodium falciparum (Welch) and o'nyong-nyong virus (ONNV) and the results between the transgenic and nontransgenic sibling females were compared. There was no difference observed with ONNV isolate SG650 in intrathoracic infections or the 50% oral infectious dose measured at 14 d postinfection or in mean body titers. Some significant differences were observed for leg titers at the medium and highest doses for those individuals in which virus titer could be detected. No consistent difference was observed between the transgenic and nontransgenic comparator females in their ability to develop P. falciparum NF54 strain parasites. This particular transgene caused no significant effect in the ability of mosquitoes to become infected by these two pathogens in this genetic background. These results are discussed in the context of risk to human health if these transgenic individuals were present in the environment.


Asunto(s)
Animales Modificados Genéticamente/parasitología , Animales Modificados Genéticamente/virología , Anopheles/genética , Mosquitos Vectores/genética , Virus O'nyong-nyong/crecimiento & desarrollo , Plasmodium falciparum/crecimiento & desarrollo , Animales , Anopheles/parasitología , Anopheles/virología , Femenino , Masculino , Mosquitos Vectores/parasitología , Mosquitos Vectores/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...