Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Brain Commun ; 3(2): fcab088, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33977271

RESUMEN

Down syndrome is the phenotypic consequence of trisomy 21, with clinical presentation including both neurodevelopmental and neurodegenerative components. Although the intellectual disability typically displayed by individuals with Down syndrome is generally global, it also involves disproportionate deficits in hippocampally-mediated cognitive processes. Hippocampal dysfunction may also relate to Alzheimer's disease-type pathology, which can appear in as early as the first decade of life and becomes universal by age 40. Using 7-tesla MRI of the brain, we present an assessment of the structure and function of the hippocampus in 34 individuals with Down syndrome (mean age 24.5 years ± 6.5) and 27 age- and sex-matched typically developing healthy controls. In addition to increased whole-brain mean cortical thickness and lateral ventricle volumes (P < 1.0 × 10-4), individuals with Down syndrome showed selective volume reductions in bilateral hippocampal subfields cornu Ammonis field 1, dentate gyrus, and tail (P < 0.005). In the group with Down syndrome, bilateral hippocampi showed widespread reductions in the strength of functional connectivity, predominately to frontal regions (P < 0.02). Age was not related to hippocampal volumes or functional connectivity measures in either group, but both groups showed similar relationships of age to whole-brain volume measures (P < 0.05). Finally, we performed an exploratory analysis of a subgroup of individuals with Down syndrome with both imaging and neuropsychological assessments. This analysis indicated that measures of spatial memory were related to mean cortical thickness, total grey matter volume and right hemisphere hippocampal subfield volumes (P < 0.02). This work provides a first demonstration of the usefulness of high-field MRI to detect subtle differences in structure and function of the hippocampus in individuals with Down syndrome, and suggests the potential for development of MRI-derived measures as surrogate markers of drug efficacy in pharmacological studies designed to investigate enhancement of cognitive function.

2.
Cancer Res ; 69(3): 1071-9, 2009 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-19141647

RESUMEN

Mismatch repair (MMR) strongly enhances cyto- and genotoxicity of several chemotherapeutic agents and environmental carcinogens. DNA double-strand breaks (DSB) formed after two replication cycles play a major role in MMR-dependent cell death by DNA alkylating drugs. Here, we examined DNA damage detection and the mechanisms of the unusually rapid induction of DSB by MMR proteins in response to carcinogenic chromium(VI). We found that MSH2-MSH6 (MutSalpha) dimer effectively bound DNA probes containing ascorbate-Cr-DNA and cysteine-Cr-DNA cross-links. Binary Cr-DNA adducts, the most abundant form of Cr-DNA damage, were poor substrates for MSH2-MSH6, and their toxicity in cells was weak and MMR independent. Although not involved in the initial recognition of Cr-DNA damage, MSH2-MSH3 (MutSbeta) complex was essential for the induction of DSB, micronuclei, and apoptosis in human cells by chromate. In situ fractionation of Cr-treated cells revealed MSH6 and MSH3 chromatin foci that originated in late S phase and did not require replication of damaged DNA. Formation of MSH3 foci was MSH6 and MLH1 dependent, whereas MSH6 foci were unaffected by MSH3 status. DSB production was associated with progression of cells from S into G(2) phase and was completely blocked by the DNA synthesis inhibitor aphidicolin. Interestingly, chromosome 3 transfer into MSH3-null HCT116 cells activated an alternative, MSH3-like activity that restored dinucleotide repeat stability and sensitivity to chromate. Thus, sequential recruitment and unprecedented cooperation of MutSalpha and MutSbeta branches of MMR in processing of Cr-DNA cross-links is the main cause of DSB and chromosomal breakage at low and moderate Cr(VI) doses.


Asunto(s)
Cromatos/farmacología , Aductos de ADN/metabolismo , Daño del ADN , ADN de Neoplasias/efectos de los fármacos , Proteínas de Unión al ADN/metabolismo , Proteína MutS de Unión a los Apareamientos Incorrectos del ADN/metabolismo , Proteína 2 Homóloga a MutS/metabolismo , Compuestos de Potasio/farmacología , Proteínas Adaptadoras Transductoras de Señales/biosíntesis , Cromatos/química , Cromatos/metabolismo , Cromosomas Humanos Par 3 , Aductos de ADN/química , ADN de Neoplasias/química , ADN de Neoplasias/metabolismo , Dimerización , Células HCT116 , Células HeLa , Humanos , Homólogo 1 de la Proteína MutL , Proteínas Nucleares/biosíntesis , Compuestos de Potasio/química , Compuestos de Potasio/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...