Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 19(4): e0301340, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38625924

RESUMEN

A safe, highly immunogenic multivalent vaccine to protect against all nine serotypes of African horse sickness virus (AHSV), will revolutionise the AHS vaccine industry in endemic countries and beyond. Plant-produced AHS virus-like particles (VLPs) and soluble viral protein 2 (VP2) vaccine candidates were developed that have the potential to protect against all nine serotypes but can equally well be formulated as mono- and bi-valent formulations for localised outbreaks of specific serotypes. In the first interferon α/ß receptor knock-out (IFNAR-/-) mice trial conducted, a nine-serotype (nonavalent) vaccine administered as two pentavalent (5 µg per serotype) vaccines (VLP/VP2 combination or exclusively VP2), were directly compared to the commercially available AHS live attenuated vaccine. In a follow up trial, mice were vaccinated with an adjuvanted nine-serotype multivalent VP2 vaccine in a prime boost strategy and resulted in the desired neutralising antibody titres of 1:320, previously demonstrated to confer protective immunity in IFNAR-/- mice. In addition, the plant-produced VP2 vaccine performed favourably when compared to the commercial vaccine. Here we provide compelling data for a nonavalent VP2-based vaccine candidate, with the VP2 from each serotype being antigenically distinguishable based on LC-MS/MS and ELISA data. This is the first preclinical trial demonstrating the ability of an adjuvanted nonavalent cocktail of soluble, plant-expressed AHS VP2 proteins administered in a prime-boost strategy eliciting high antibody titres against all 9 AHSV serotypes. Furthermore, elevated T helper cells 2 (Th2) and Th1, indicative of humoral and cell-mediated memory T cell immune responses, respectively, were detected in mouse serum collected 14 days after the multivalent prime-boost vaccination. Both Th2 and Th1 may play a role to confer protective immunity. These preclinical immunogenicity studies paved the way to test the safety and protective efficacy of the plant-produced nonavalent VP2 vaccine candidate in the target animals, horses.


Asunto(s)
Virus de la Enfermedad Equina Africana , Enfermedad Equina Africana , Vacunas Virales , Animales , Ratones , Caballos , Virus de la Enfermedad Equina Africana/genética , Enfermedad Equina Africana/prevención & control , Vacunas Combinadas , Cromatografía Liquida , Proteínas de la Cápside , Espectrometría de Masas en Tándem , Anticuerpos Antivirales
2.
Vaccine ; 42(4): 738-744, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38238112

RESUMEN

In the quest for heightened protection against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants, we engineered a prototype vaccine utilizing the plant expression system of Nicotiana benthamiana, to produce a recombinant SARS-CoV-2 virus-like particle (VLP) vaccine presenting the S-protein from the Beta (B.1.351) variant of concern (VOC). This innovative vaccine, formulated with either a squalene oil-in-water emulsion or a synthetic CpG oligodeoxynucleotide adjuvant, demonstrated efficacy in a golden Syrian Hamster challenge model. The Beta VLP vaccine induced a robust humoral immune response, with serum exhibiting neutralization not only against SARS-CoV-2 Beta but also cross-neutralizing Delta and Omicron pseudoviruses. Protective efficacy was demonstrated, evidenced by reduced viral RNA copies and mitigated weight loss and lung damage compared to controls. This compelling data instills confidence in the creation of a versatile platform for the local manufacturing of potential pan-sarbecovirus vaccines, against evolving viral threats.


Asunto(s)
COVID-19 , Animales , Cricetinae , Humanos , COVID-19/prevención & control , Mesocricetus , SARS-CoV-2 , Vacunas contra la COVID-19/genética , Glicoproteína de la Espiga del Coronavirus , Anticuerpos Antivirales , Anticuerpos Neutralizantes
3.
Dev Dyn ; 253(2): 233-254, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37688792

RESUMEN

BACKGROUND: Latent TGFß binding protein-2 (LTBP2) is a fibrillin 1 binding component of the microfibril. LTBP2 is the only LTBP protein that does not bind any isoforms of TGFß, although it may interfere with the function of other LTBPs or interact with other signaling pathways. RESULTS: Here, we investigate mice lacking Ltbp2 (Ltbp2-/- ) and identify multiple phenotypes that impact bodyweight and fat mass, and affect bone and skin development. The alterations in skin and bone development are particularly noteworthy since the strength of these tissues is differentially affected by loss of Ltbp2. Interestingly, some tissues that express high levels of Ltbp2, such as the aorta and lung, do not have a developmental or homeostatic phenotype. CONCLUSIONS: Analysis of these mice show that LTBP2 has complex effects on development through direct effects on the extracellular matrix (ECM) or on signaling pathways that are known to regulate the ECM.


Asunto(s)
Proteínas Portadoras , Matriz Extracelular , Animales , Ratones , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Matriz Extracelular/metabolismo , Fenotipo , Factor de Crecimiento Transformador beta/metabolismo , Isoformas de Proteínas/metabolismo , Unión Proteica
4.
Vaccine ; 41(13): 2261-2269, 2023 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-36868876

RESUMEN

The outbreak of the SARS-CoV-2 global pandemic heightened the pace of vaccine development with various vaccines being approved for human use in a span of 24 months. The SARS-CoV-2 trimeric spike (S) surface glycoprotein, which mediates viral entry by binding to ACE2, is a key target for vaccines and therapeutic antibodies. Plant biopharming is recognized for its scalability, speed, versatility, and low production costs and is an increasingly promising molecular pharming vaccine platform for human health. We developed Nicotiana benthamiana-produced SARS-CoV-2 virus-like particle (VLP) vaccine candidates displaying the S-protein of the Beta (B.1.351) variant of concern (VOC), which triggered cross-reactive neutralising antibodies against Delta (B.1.617.2) and Omicron (B.1.1.529) VOCs. In this study, immunogenicity of the VLPs (5 µg per dose) adjuvanted with three independent adjuvants i.e. oil-in-water based adjuvants SEPIVAC SWETM (Seppic, France) and "AS IS" (Afrigen, South Africa) as well as a slow-release synthetic oligodeoxynucleotide (ODN) adjuvant designated NADA (Disease Control Africa, South Africa) were evaluated in New Zealand white rabbits and resulted in robust neutralising antibody responses after booster vaccination, ranging from 1:5341 to as high as 1:18204. Serum neutralising antibodies elicited by the Beta variant VLP vaccine also showed cross-neutralisation against the Delta and Omicron variants with neutralising titres ranging from 1:1702 and 1:971, respectively. Collectively, these data provide support for the development of a plant-produced VLP based candidate vaccine against SARS-CoV-2 based on circulating variants of concern.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Conejos , Animales , Humanos , SARS-CoV-2 , Agricultura Molecular , COVID-19/prevención & control , Adyuvantes Inmunológicos , Anticuerpos Neutralizantes , Sudáfrica , Anticuerpos Antivirales , Glicoproteína de la Espiga del Coronavirus/genética , Inmunogenicidad Vacunal
5.
Matrix Biol ; 117: 1-14, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36773748

RESUMEN

Supravalvular aortic stenosis (SVAS) is an autosomal dominant disease resulting from elastin (ELN) haploinsufficiency. Individuals with SVAS typically develop a thickened arterial media with an increased number of elastic lamellae and smooth muscle cell (SMC) layers and stenosis superior to the aortic valve. A mouse model of SVAS (Eln+/-) was generated that recapitulates many aspects of the human disease, including increased medial SMC layers and elastic lamellae, large artery stiffness, and hypertension. The vascular changes in these mice were thought to be responsible for the hypertension phenotype. However, a renin gene (Ren) duplication in the original 129/Sv genetic background and carried through numerous strain backcrosses raised the possibility of renin-mediated effects on blood pressure. To exclude excess renin activity as a disease modifier, we utilized the Cre-LoxP system to rederive Eln hemizygous mice on a pure C57BL/6 background (Sox2-Cre;Elnf/f). Here we show that Sox2-Cre;Eln+/f mice, with a single Ren1 gene and normal renin levels, phenocopy the original global knockout line. Characteristic traits include an increased number of elastic lamellae and SMC layers, stiff elastic arteries, and systolic hypertension with widened pulse pressure. Importantly, small resistance arteries of Sox2-Cre;Eln+/f mice exhibit a significant change in endothelial cell function and hypercontractility to angiotensin II, findings that point to pathway-specific alterations in resistance arteries that contribute to the hypertensive phenotype. These data confirm that the cardiovascular changes, particularly systolic hypertension, seen in Eln+/- mice are due to Eln hemizygosity rather than Ren duplication.


Asunto(s)
Estenosis Aórtica Supravalvular , Hipertensión , Animales , Humanos , Ratones , Presión Sanguínea , Elastina/genética , Elastina/metabolismo , Haploinsuficiencia , Hipertensión/genética , Hipertensión/metabolismo , Ratones Endogámicos C57BL , Renina/genética
6.
Cancer Imaging ; 23(1): 10, 2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36691077

RESUMEN

Contrast-enhanced mammography (CEM) is becoming a widely adopted modality in breast imaging over the past few decades and exponentially so over the last few years, with strong evidence of high diagnostic performance in cancer detection. Evidence is also growing indicating comparative performance of CEM to MRI in sensitivity with fewer false positive rates. As application of CEM ranges from potential use in screening dense breast populations to staging of known breast malignancy, increased familiarity with the modality and its implementation, and disease processes encountered becomes of great clinical significance. This review emphasizes expected normal findings on CEM followed by a focus on examples of the commonly encountered benign and malignant pathologies on CEM.


Asunto(s)
Neoplasias de la Mama , Mamografía , Humanos , Femenino , Mamografía/métodos , Neoplasias de la Mama/patología , Densidad de la Mama , Medios de Contraste , Mama/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Sensibilidad y Especificidad
7.
Vaccines (Basel) ; 10(12)2022 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-36560409

RESUMEN

This study aimed to test zona pellucida (ZP) vaccines' immunocontraceptive efficacy and safety when formulated with non-Freund's adjuvant (6% Pet Gel A and 500 Μg Poly(I:C)). Twenty-four jennies were randomly assigned to three treatment groups: reZP (n = 7) received three doses of recombinant ZP vaccine; pZP (n = 9) received two doses of native porcine ZP; and Control group (n = 8) received two injections of placebo. Jennies were monitored weekly via transrectal ultrasonography and blood sampling for serum progesterone profiles and anti-pZP antibody titres. In addition, adverse effects were inspected after vaccination. Thirty-five days after the last treatment, jacks were introduced to each group and rotated every 28 days. Vaccination with both pZP and reZP was associated with ovarian shutdown in 44% (4/9) and 71% (4/7) of jennies, 118 ± 33 and 91 ± 20 days after vaccination, respectively (p > 0.05). Vaccination delayed the chances of a jenny becoming pregnant (p = 0.0005; Control, 78 ± 31 days; pZP, 218 ± 69 days; reZP, 244 ± 104 days). Anti-pZP antibody titres were elevated in all vaccinated jennies compared to Control jennies (p < 0.05). In addition, only mild local injection site reactions were observed in the jennies after treatment. In conclusion, ZP vaccines formulated with non-Freund's adjuvant effectively controlled reproduction in jennies with only minor localised side effects.

8.
Sci Adv ; 8(11): eabl6367, 2022 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-35294243

RESUMEN

Repair of plasma membranes damaged by bacterial pore-forming toxins, such as streptolysin O or perfringolysin O, during septic cardiomyopathy or necrotizing soft tissue infections is mediated by several protein families. However, the activation of these proteins downstream of ion influx is poorly understood. Here, we demonstrate that following membrane perforation by bacterial cholesterol-dependent cytolysins, calcium influx activates mixed lineage kinase 3 independently of protein kinase C or ceramide generation. Mixed lineage kinase 3 uncouples mitogen-activated kinase kinase (MEK) and extracellular-regulated kinase (ERK) signaling. MEK signals via an ERK-independent pathway to promote rapid annexin A2 membrane recruitment and enhance microvesicle shedding. This pathway accounted for 70% of all calcium ion-dependent repair responses to streptolysin O and perfringolysin O, but only 50% of repair to intermedilysin. We conclude that mixed lineage kinase signaling via MEK coordinates microvesicle shedding, which is critical for cellular survival against cholesterol-dependent cytolysins.

10.
J Am Soc Nephrol ; 33(1): 155-173, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34758982

RESUMEN

BACKGROUND: Actin stress fibers are abundant in cultured cells, but little is known about them in vivo. In podocytes, much evidence suggests that mechanobiologic mechanisms underlie podocyte shape and adhesion in health and in injury, with structural changes to actin stress fibers potentially responsible for pathologic changes to cell morphology. However, this hypothesis is difficult to rigorously test in vivo due to challenges with visualization. A technology to image the actin cytoskeleton at high resolution is needed to better understand the role of structures such as actin stress fibers in podocytes. METHODS: We developed the first visualization technique capable of resolving the three-dimensional cytoskeletal network in mouse podocytes in detail, while definitively identifying the proteins that comprise this network. This technique integrates membrane extraction, focused ion-beam scanning electron microscopy, and machine learning image segmentation. RESULTS: Using isolated mouse glomeruli from healthy animals, we observed actin cables and intermediate filaments linking the interdigitated podocyte foot processes to newly described contractile actin structures, located at the periphery of the podocyte cell body. Actin cables within foot processes formed a continuous, mesh-like, electron-dense sheet that incorporated the slit diaphragms. CONCLUSIONS: Our new technique revealed, for the first time, the detailed three-dimensional organization of actin networks in healthy podocytes. In addition to being consistent with the gel compression hypothesis, which posits that foot processes connected by slit diaphragms act together to counterbalance the hydrodynamic forces across the glomerular filtration barrier, our data provide insight into how podocytes respond to mechanical cues from their surrounding environment.


Asunto(s)
Citoesqueleto de Actina/ultraestructura , Imagenología Tridimensional/métodos , Aprendizaje Automático , Microscopía Electrónica , Podocitos/ultraestructura , Animales , Ratones , Ratones Endogámicos C57BL , Modelos Animales
11.
Front Cardiovasc Med ; 8: 782138, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34790711

RESUMEN

There is ample evidence supporting a role for angiotensin II type 2 receptor (AT2R) in counterbalancing the effects of angiotensin II (ang II) through the angiotensin II type 1 receptor by promoting vasodilation and having anti-inflammatory effects. Elastin insufficiency in both humans and mice results in large artery stiffness and systolic hypertension. Unexpectedly, mesenteric arteries from elastin insufficient (Eln +/-) mice were shown to have significant vasoconstriction to AT2R agonism in vitro suggesting that AT2R may have vasoconstrictor effects in elastin insufficiency. Given the potential promise for the use of AT2R agonists clinically, the goal of this study was to determine whether AT2R has vasoconstrictive effects in elastin insufficiency in vivo. To avoid off-target effects of agonists and antagonists, mice lacking AT2R (Agtr2 -/Y ) were bred to Eln +/- mice and cardiovascular parameters were assessed in wild-type (WT), Agtr2 -/Y , Eln +/-, and Agtr2 -/Y ;Eln +/- littermates. As previously published, Agtr2 -/Y mice were normotensive at baseline and had no large artery stiffness, while Eln +/- mice exhibited systolic hypertension and large artery stiffness. Loss of AT2R in Eln +/- mice did not affect large artery stiffness or arterial structure but resulted in significant reduction of both systolic and diastolic blood pressure. These data support a potential vasocontractile role for AT2R in elastin insufficiency. Careful consideration and investigation are necessary to determine the patient population that might benefit from the use of AT2R agonists.

12.
Arterioscler Thromb Vasc Biol ; 41(12): 2890-2905, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34587758

RESUMEN

OBJECTIVE: Using a mouse model of Eln (elastin) insufficiency that spontaneously develops neointima in the ascending aorta, we sought to understand the origin and phenotypic heterogeneity of smooth muscle cells (SMCs) contributing to intimal hyperplasia. We were also interested in exploring how vascular cells adapt to the absence of Eln. Approach and Results: We used single-cell sequencing together with lineage-specific cell labeling to identify neointimal cell populations in a noninjury, genetic model of neointimal formation. Inactivating Eln production in vascular SMCs results in rapid intimal hyperplasia around breaks in the ascending aorta's internal elastic lamina. Using lineage-specific Cre drivers to both lineage mark and inactivate Eln expression in the secondary heart field and neural crest aortic SMCs, we found that cells with a secondary heart field lineage are significant contributors to neointima formation. We also identified a small population of secondary heart field-derived SMCs underneath and adjacent to the internal elastic lamina. Within the neointima of SMC-Eln knockout mice, 2 unique SMC populations were identified that are transcriptionally different from other SMCs. While these cells had a distinct gene signature, they expressed several genes identified in other studies of neointimal lesions, suggesting that some mechanisms underlying neointima formation in Eln insufficiency are shared with adult vessel injury models. CONCLUSIONS: These results highlight the unique developmental origin and transcriptional signature of cells contributing to neointima in the ascending aorta. Our findings also show that the absence of Eln, or changes in elastic fiber integrity, influences the SMC biological niche in ways that lead to altered cell phenotypes.


Asunto(s)
Elastina/metabolismo , Músculo Liso Vascular/citología , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Neointima/metabolismo , Animales , Aorta/metabolismo , Diferenciación Celular , Matriz Extracelular/metabolismo , Femenino , Masculino , Ratones Endogámicos , Modelos Animales
13.
Proc Natl Acad Sci U S A ; 117(50): 31871-31881, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33257567

RESUMEN

TAT-RasGAP317-326 is a cell-penetrating peptide-based construct with anticancer and antimicrobial activities. This peptide kills a subset of cancer cells in a manner that does not involve known programmed cell death pathways. Here we have elucidated the mode of action allowing TAT-RasGAP317-326 to kill cells. This peptide binds and disrupts artificial membranes containing lipids typically enriched in the inner leaflet of the plasma membrane, such as phosphatidylinositol-bisphosphate (PIP2) and phosphatidylserine (PS). Decreasing the amounts of PIP2 in cells renders them more resistant to TAT-RasGAP317-326, while reducing the ability of cells to repair their plasma membrane makes them more sensitive to the peptide. The W317A TAT-RasGAP317-326 point mutant, known to have impaired killing activities, has reduced abilities to bind and permeabilize PIP2- and PS-containing membranes and to translocate through biomembranes, presumably because of a higher propensity to adopt an α-helical state. This work shows that TAT-RasGAP317-326 kills cells via a form of necrosis that relies on the physical disruption of the plasma membrane once the peptide targets specific phospholipids found on the cytosolic side of the plasma membrane.


Asunto(s)
Muerte Celular/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Proteínas Activadoras de GTPasa/farmacología , Fragmentos de Péptidos/farmacología , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatidilserinas/metabolismo , Animales , Células CHO , Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Cricetulus , Proteínas Activadoras de GTPasa/uso terapéutico , Células HeLa , Humanos , Liposomas/metabolismo , Liposomas/ultraestructura , Microscopía Electrónica , Simulación de Dinámica Molecular , Neoplasias/tratamiento farmacológico , Resonancia Magnética Nuclear Biomolecular , Fragmentos de Péptidos/uso terapéutico
14.
Nat Commun ; 11(1): 3825, 2020 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-32732874

RESUMEN

The malaria parasite interfaces with its host erythrocyte (RBC) using a unique organelle, the parasitophorous vacuole (PV). The mechanism(s) are obscure by which its limiting membrane, the parasitophorous vacuolar membrane (PVM), collaborates with the parasite plasma membrane (PPM) to support the transport of proteins, lipids, nutrients, and metabolites between the cytoplasm of the parasite and the cytoplasm of the RBC. Here, we demonstrate that the PV has structure characterized by micrometer-sized regions of especially close apposition between the PVM and the PPM. To determine if these contact sites are involved in any sort of transport, we localize the PVM nutrient-permeable and protein export channel EXP2, as well as the PPM lipid transporter PfNCR1. We find that EXP2 is excluded from, but PfNCR1 is included within these regions of close apposition. We conclude that the host-parasite interface is structured to segregate those transporters of hydrophilic and hydrophobic substrates.


Asunto(s)
Lípidos , Malaria Falciparum/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/metabolismo , Transporte Biológico , Membrana Celular/metabolismo , Citoplasma/metabolismo , Citoplasma/parasitología , Eritrocitos/metabolismo , Eritrocitos/parasitología , Interacciones Huésped-Parásitos , Humanos , Membranas Intracelulares/metabolismo , Membranas Intracelulares/parasitología , Malaria Falciparum/parasitología , Plasmodium falciparum/fisiología , Transporte de Proteínas , Vacuolas/metabolismo , Vacuolas/parasitología
15.
Theriogenology ; 153: 27-33, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32417608

RESUMEN

Feral and semi-feral donkeys are recognised as a problem in some world regions. The main problem associated with uncontrolled donkey populations is habitat degradation and competition for feed resources, especially in arid climes. Controlling population numbers would reduce the impact of donkeys and other species. While removal by various means is effective, it has been shown to stimulate reproductive rate. Probably the most effective and humane solution is reducing reproduction using minimally invasive methods including immunocontraception. This study tested the immunocontraceptive efficacy and safety of zona pellucida (ZP) vaccines, both recombinant (reZP; three treatments) and native porcine (pZP; two treatments) vaccines formulated with Freund's modified complete (primary) and Freund's incomplete (boosters) adjuvants in donkey jennies. Control jennies received adjuvants only (two treatments). Twenty-five non-pregnant jennies were randomly assigned to reZP (n = 9), pZP (n = 8) or control (n = 8) groups. Weekly monitoring of the reproductive tract and ovaries via transrectal palpation and ultrasound and inspection of injection sites was conducted and anti-pZP antibody titers were measured. Five weeks after last treatment, one donkey jack was introduced to each group and rotated every 21 days. By 232 days after last treatment the number pregnant and median days to pregnancy was 2/9 and 214 (reZP group), 1/8 and 196 (pZP group) and 8/8 and 77 (control group). Median time to ovarian shut-down was 77 (9/9) and 56 (7/8) days for reZP and pZP groups, respectively. This was observed in association with a distinct reduction in mean uterine diameter. The antibody response was equally good for both ZP-treated groups. Incorporation of Freund's adjuvants initially produced a high incidence of side effects from local swelling and intermittent lameness followed weeks later by sterile abscesses (reZP, 9/9; pZP, 7/8; control, 3/8). Both ZP vaccines effectively controlled reproduction in jennies, albeit with a high incidence of adjuvant-associated side effects.


Asunto(s)
Anticoncepción Inmunológica/veterinaria , Equidae , Proteínas Recombinantes , Zona Pelúcida/inmunología , Animales , Ciclo Estral/efectos de los fármacos , Femenino , Ovario/efectos de los fármacos , Embarazo , Zona Pelúcida/metabolismo
16.
mBio ; 11(1)2020 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-32047126

RESUMEN

Venezuelan and western equine encephalitis viruses (VEEV and WEEV, respectively) invade the central nervous system (CNS) early during infection, via neuronal and hematogenous routes. While viral replication mediates host shutoff, including expression of type I interferons (IFN), few studies have addressed how alphaviruses gain access to the CNS during established infection or the mechanisms of viral crossing at the blood-brain barrier (BBB). Here, we show that hematogenous dissemination of VEEV and WEEV into the CNS occurs via caveolin-1 (Cav-1)-mediated transcytosis (Cav-MT) across an intact BBB, which is impeded by IFN and inhibitors of RhoA GTPase. Use of reporter and nonreplicative strains also demonstrates that IFN signaling mediates viral restriction within cells comprising the neurovascular unit (NVU), differentially rendering brain endothelial cells, pericytes, and astrocytes permissive to viral replication. Transmission and immunoelectron microscopy revealed early events in virus internalization and Cav-1 association within brain endothelial cells. Cav-1-deficient mice exhibit diminished CNS VEEV and WEEV titers during early infection, whereas viral burdens in peripheral tissues remained unchanged. Our findings show that alphaviruses exploit Cav-MT to enter the CNS and that IFN differentially restricts this process at the BBB.IMPORTANCE VEEV, WEEV, and eastern equine encephalitis virus (EEEV) are emerging infectious diseases in the Americas, and they have caused several major outbreaks in the human and horse population during the past few decades. Shortly after infection, these viruses can infect the CNS, resulting in severe long-term neurological deficits or death. Neuroinvasion has been associated with virus entry into the CNS directly from the bloodstream; however, the underlying molecular mechanisms have remained largely unknown. Here, we demonstrate that following peripheral infection alphavirus augments vesicular formation/trafficking at the BBB and utilizes Cav-MT to cross an intact BBB, a process regulated by activators of Rho GTPases within brain endothelium. In vivo examination of early viral entry in Cav-1-deficient mice revealed significantly lower viral burdens in the brain than in similarly infected wild-type animals. These studies identify a potentially targetable pathway to limit neuroinvasion by alphaviruses.


Asunto(s)
Barrera Hematoencefálica/virología , Caveolas/virología , Virus de la Encefalitis Equina Venezolana/fisiología , Virus de la Encefalitis Equina del Oeste/fisiología , Transcitosis , Internalización del Virus , Animales , Caveolina 1/genética , Línea Celular , Sistema Nervioso Central/virología , Células Endoteliales/virología , Masculino , Ratones Endogámicos C57BL , Replicación Viral
17.
Circ Res ; 125(11): 1006-1018, 2019 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-31590613

RESUMEN

RATIONALE: Elastin is an important ECM (extracellular matrix) protein in large and small arteries. Vascular smooth muscle cells (SMCs) produce the layered elastic laminae found in elastic arteries but synthesize little elastin in muscular arteries. However, muscular arteries have a well-defined internal elastic lamina (IEL) that separates endothelial cells (ECs) from SMCs. The extent to which ECs contribute elastin to the IEL is unknown. OBJECTIVE: To use targeted elastin (Eln) deletion in mice to explore the relative contributions of SMCs and ECs to elastic laminae formation in different arteries. METHODS AND RESULTS: We used SMC- and EC-specific Cre recombinase transgenes with a novel floxed Eln allele to focus gene inactivation in mice. Inactivation of Eln in SMCs using Sm22aCre resulted in depletion of elastic laminae in the arterial wall with the exception of the IEL and SMC clusters in the outer media near the adventitia. Inactivation of elastin in ECs using Tie2Cre or Cdh5Cre resulted in normal medial elastin and a typical IEL in elastic arteries. In contrast, the IEL was absent or severely disrupted in muscular arteries. Interruptions in the IEL resulted in neointimal formation in the ascending aorta but not in muscular arteries. CONCLUSIONS: Combined with lineage-specific fate mapping systems, our knockout results document an unexpected heterogeneity in vascular cells that produce the elastic laminae. SMCs and ECs can independently form an IEL in most elastic arteries, whereas ECs are the major source of elastin for the IEL in muscular and resistance arteries. Neointimal formation at IEL disruptions in the ascending aorta confirms that the IEL is a critical physical barrier between SMCs and ECs in the large elastic arteries. Our studies provide new information about how SMCs and ECs contribute elastin to the arterial wall and how local elastic laminae defects may contribute to cardiovascular disease.


Asunto(s)
Tejido Elástico/metabolismo , Elastina/metabolismo , Células Endoteliales/metabolismo , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Animales , Arterias/crecimiento & desarrollo , Arterias/metabolismo , Presión Sanguínea , Linaje de la Célula , Proliferación Celular , Tejido Elástico/crecimiento & desarrollo , Tejido Elástico/ultraestructura , Elastina/deficiencia , Elastina/genética , Células Endoteliales/ultraestructura , Femenino , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Liso Vascular/crecimiento & desarrollo , Músculo Liso Vascular/ultraestructura , Miocitos del Músculo Liso/ultraestructura , Neointima , Transducción de Señal
19.
Proc Natl Acad Sci U S A ; 116(37): 18445-18454, 2019 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-31455733

RESUMEN

A phase-separated, liquid-like organelle called the pyrenoid mediates CO2 fixation in the chloroplasts of nearly all eukaryotic algae. While most algae have 1 pyrenoid per chloroplast, here we describe a mutant in the model alga Chlamydomonas that has on average 10 pyrenoids per chloroplast. Characterization of the mutant leads us to propose a model where multiple pyrenoids are favored by an increase in the surface area of the starch sheath that surrounds and binds to the liquid-like pyrenoid matrix. We find that the mutant's phenotypes are due to disruption of a gene, which we call StArch Granules Abnormal 1 (SAGA1) because starch sheath granules, or plates, in mutants lacking SAGA1 are more elongated and thinner than those of wild type. SAGA1 contains a starch binding motif, suggesting that it may directly regulate starch sheath morphology. SAGA1 localizes to multiple puncta and streaks in the pyrenoid and physically interacts with the small and large subunits of the carbon-fixing enzyme Rubisco (ribulose-1,5-bisphosphate carboxylase/oxygenase), a major component of the liquid-like pyrenoid matrix. Our findings suggest a biophysical mechanism by which starch sheath morphology affects pyrenoid number and CO2-concentrating mechanism function, advancing our understanding of the structure and function of this biogeochemically important organelle. More broadly, we propose that the number of phase-separated organelles can be regulated by imposing constraints on their surface area.


Asunto(s)
Proteínas Portadoras/metabolismo , Chlamydomonas reinhardtii/metabolismo , Plastidios/metabolismo , Ribulosa-Bifosfato Carboxilasa/metabolismo , Almidón/química , Carbono/metabolismo , Ciclo del Carbono , Chlamydomonas/metabolismo , Chlamydomonas reinhardtii/genética , Mutación , Fenotipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
20.
Protist ; 170(3): 287-313, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31154072

RESUMEN

Acidocalcisomes are membrane-enclosed organelles with acidic lumens that accumulate polyphosphate, often in granular form, and sequester calcium and metals. They carry a transmembrane polyphosphate polymerase and two classes of proton pumps: H+-pyrophosphatases (H+-PPases) and V-type ATPases. This report describes acidocalcisomes that were snap-frozen in living cells, primarily the green alga Chlamydomonas reinhardtii, and then fractured and etched (QFDEEM). Polyphosphate granules prove to be uncommon in log-phase C. reinhardtii cells and abundant in stressed cells, where they are also found within autophagy-related vacuoles. Their E (ectoplasmic) fracture face adopts a unique rugose morphology with etching, and displays ∼14nm globular domains in broken cell preparations. Using etched membrane morphology as a guide, acidocalcisomes were identified during assembly in the trans-Golgi and were recognized in QFDEEM replicas of 18 additional algae and protists. Phylogenetic analysis documents that the eukaryotic gene encoding the signature acidocalcisomal H+-PPase pump has homologues in three widespread eukaryotic clades and has been lost in opisthokonts and Amoebozoa. The eukaryotic clades are related to three functionally diverged prokaryotic PPase pumps, one of which transports Na+. Our data indicate that the Last Eukaryotic Common Ancestor (LECA) encoded two bacteria-derived pumps and one Asgard-archaea-derived pump.


Asunto(s)
Eucariontes , Filogenia , Eucariontes/ultraestructura , Orgánulos/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...