Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Prog Neurobiol ; 228: 102486, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37343762

RESUMEN

Olfaction is an important sensory modality for many species and greatly influences animal and human behavior. Still, much about olfactory perception remains unknown. The anterior olfactory nucleus is one of the brain's central early olfactory processing areas. Located directly posterior to the olfactory bulb in the olfactory peduncle with extensive in- and output connections and unique cellular composition, it connects olfactory processing centers of the left and right hemispheres. Almost 20 years have passed since the last comprehensive review on the anterior olfactory nucleus has been published and significant advances regarding its anatomy, function, and pathophysiology have been made in the meantime. Here we briefly summarize previous knowledge on the anterior olfactory nucleus, give detailed insights into the progress that has been made in recent years, and map out its emerging importance in translational research of neurological diseases.


Asunto(s)
Corteza Olfatoria , Vías Olfatorias , Animales , Humanos , Vías Olfatorias/fisiología , Bulbo Olfatorio , Olfato/fisiología
2.
Stud Health Technol Inform ; 302: 1025-1026, 2023 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-37203571

RESUMEN

Despite developments in wearable devices for detecting various bio-signals, continuous measurement of breathing rate (BR) remains a challenge. This work presents an early proof of concept that employs a wearable patch to estimate BR. We propose combining techniques for calculating BR from electrocardiogram (ECG) and accelerometer (ACC) signals, while applying decision rules based on signal-to-noise (SNR) to fuse the estimates for improved accuracy.


Asunto(s)
Procesamiento de Señales Asistido por Computador , Dispositivos Electrónicos Vestibles , Frecuencia Cardíaca , Electrocardiografía/métodos , Acelerometría , Algoritmos
4.
Cephalalgia ; 42(11-12): 1148-1159, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35514204

RESUMEN

BACKGROUND: Migraine shows a cyclic pattern with an inter-ictal-, a pre-ictal, an ictal- and a post-ictal phase. We aimed to examine changes in psychophysical parameters during the migraine cycle. METHODS: The perception of nociceptive and non-nociceptive stimuli and an electrically induced axon-reflex-erythema were assessed in 20 healthy controls and 14 migraine patients on five consecutive days according to different phases of the migraine cycle. Pain was rated three times during a 10-second electrical stimulus. The size of the axon-reflex-erythema was determined using laser-Doppler-imaging. Intensity and hedonic estimates of odours presented by Sniffin' Sticks were rated. RESULTS: In healthy controls, no significant changes over the test days were observed. In migraine patients pain thresholds at the head decreased with an ictal minimum. Less habituation after five seconds of stimulation at the head was found pre-ictally, whereas reduced habituation to 10-second electrical stimulation was present in all phases. The axon-reflex-erythema size showed an inter-ictal-specific minimum at the head. odours were perceived ictally as more unpleasant and intense. CONCLUSIONS: Somatosensory functions, pain thresholds and habituation as predominantly central parameters, axon-reflex-erythema as a peripheral function of trigeminal neurons and odour perception as a predominantly extra-thalamic sensation change specifically over the migraine cycle indicating complex variations of neuronal signal processing.


Asunto(s)
Habituación Psicofisiológica , Trastornos Migrañosos , Eritema , Habituación Psicofisiológica/fisiología , Humanos , Dolor , Umbral del Dolor/fisiología
5.
Front Neurol ; 13: 1040648, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36686527

RESUMEN

Epilepsy has a high prevalence and can severely impair quality of life and increase the risk of premature death. Sudden unexpected death in epilepsy (SUDEP) is the leading cause of death in drug-resistant epilepsy and most often results from respiratory and cardiac impairments due to brainstem dysfunction. Epileptic activity can spread widely, influencing neuronal activity in regions outside the epileptic network. The brainstem controls cardiorespiratory activity and arousal and reciprocally connects to cortical, diencephalic, and spinal cord areas. Epileptic activity can propagate trans-synaptically or via spreading depression (SD) to alter brainstem functions and cause cardiorespiratory dysfunction. The mechanisms by which seizures propagate to or otherwise impair brainstem function and trigger the cascading effects that cause SUDEP are poorly understood. We review insights from mouse models combined with new techniques to understand the pathophysiology of epilepsy and SUDEP. These techniques include in vivo, ex vivo, invasive and non-invasive methods in anesthetized and awake mice. Optogenetics combined with electrophysiological and optical manipulation and recording methods offer unique opportunities to study neuronal mechanisms under normal conditions, during and after non-fatal seizures, and in SUDEP. These combined approaches can advance our understanding of brainstem pathophysiology associated with seizures and SUDEP and may suggest strategies to prevent SUDEP.

6.
Sci Rep ; 11(1): 18920, 2021 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-34556704

RESUMEN

Chronically implanted neural probes are powerful tools to decode brain activity however, recording population and spiking activity over long periods remains a major challenge. Here, we designed and fabricated flexible intracortical Michigan-style arrays with a shank cross-section per electrode of 250 µm[Formula: see text] utilizing the polymer paryleneC with the goal to improve the immune acceptance. As flexible neural probes are unable to penetrate the brain due to the low buckling force threshold, a tissue-friendly insertion system was developed by reducing the effective shank length. The insertion strategy enabled the implantation of the four, bare, flexible shanks up to 2 mm into the mouse brain without increasing the implantation footprint and therefore, minimizing the acute trauma. In acute recordings from the mouse somatosensory cortex and the olfactory bulb, we demonstrated that the flexible probes were able to simultaneously detect local field potentials as well as single and multi-unit activity. Additionally, the flexible arrays outperformed stiff probes with respect to yield of single unit activity. Following the successful in vivo validation, we further improved the microfabrication towards a double-metal-layer process, and were able to double the number of electrodes per shank by keeping the shank width resulting in a cross-section per electrode of 118 µm[Formula: see text].

8.
Front Mol Neurosci ; 14: 709228, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34385907

RESUMEN

Apart from the most prominent symptoms in Autism spectrum disorder (ASD), namely deficits in social interaction, communication and repetitive behavior, patients often show abnormal sensory reactivity to environmental stimuli. Especially potentially painful stimuli are reported to be experienced in a different way compared to healthy persons. In our present study, we identified an ASD patient carrying compound heterozygous mutations in the voltage-gated sodium channel (VGSC) Na v 1.8, which is preferentially expressed in sensory neurons. We expressed both mutations, p.I1511M and p.R512∗, in a heterologous expression system and investigated their biophysical properties using patch-clamp recordings. The results of these experiments reveal that the p.R512∗ mutation renders the channel non-functional, while the p.I1511M mutation showed only minor effects on the channel's function. Behavioral experiments in a Na v 1.8 loss-of-function mouse model additionally revealed that Na v 1.8 may play a role in autism-like symptomatology. Our results present Na v 1.8 as a protein potentially involved in ASD pathophysiology and may therefore offer new insights into the genetic basis of this disease.

9.
Sci Rep ; 11(1): 6934, 2021 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-33767215

RESUMEN

Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder caused by an expanded polyglutamine repeat in the huntingtin gene. The neuropathology of HD is characterized by the decline of a specific neuronal population within the brain, the striatal medium spiny neurons (MSNs). The origins of this extreme vulnerability remain unknown. Human induced pluripotent stem cell (hiPS cell)-derived MSNs represent a powerful tool to study this genetic disease. However, the differentiation protocols published so far show a high heterogeneity of neuronal populations in vitro. Here, we compared two previously published protocols to obtain hiPS cell-derived striatal neurons from both healthy donors and HD patients. Patch-clamp experiments, immunostaining and RT-qPCR were performed to characterize the neurons in culture. While the neurons were mature enough to fire action potentials, a majority failed to express markers typical for MSNs. Voltage-clamp experiments on voltage-gated sodium (Nav) channels revealed a large variability between the two differentiation protocols. Action potential analysis did not reveal changes induced by the HD mutation. This study attempts to demonstrate the current challenges in reproducing data of previously published differentiation protocols and in generating hiPS cell-derived striatal MSNs to model a genetic neurodegenerative disorder in vitro.


Asunto(s)
Técnicas de Cultivo de Célula , Diferenciación Celular , Enfermedad de Huntington , Neuronas/fisiología , Potenciales de Acción , Animales , Calcio/metabolismo , Estudios de Casos y Controles , Línea Celular , Humanos , Células Madre Pluripotentes Inducidas , Ratones Endogámicos C57BL , Subunidad beta-4 de Canal de Sodio Activado por Voltaje/metabolismo , Ácido gamma-Aminobutírico/metabolismo
10.
Channels (Austin) ; 15(1): 208-228, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33487118

RESUMEN

Mutations in the voltage-gated sodium channel Nav1.7 are linked to human pain. The Nav1.7/N1245S variant was described before in several patients suffering from primary erythromelalgia and/or olfactory hypersensitivity. We have identified this variant in a pain patient and a patient suffering from severe and life-threatening orthostatic hypotension. In addition, we report a female patient suffering from muscle pain and carrying the Nav1.7/E1139K variant. We tested both Nav1.7 variants by whole-cell voltage-clamp recordings in HEK293 cells, revealing a slightly enhanced current density for the N1245S variant when co-expressed with the ß1 subunit. This effect was counteracted by an enhanced slow inactivation. Both variants showed similar voltage dependence of activation and steady-state fast inactivation, as well as kinetics of fast inactivation, deactivation, and use-dependency compared to WT Nav1.7. Finally, homology modeling revealed that the N1245S substitution results in different intramolecular interaction partners. Taken together, these experiments do not point to a clear pathogenic effect of either the N1245S or E1139K variant and suggest they may not be solely responsible for the patients' pain symptoms. As discussed previously for other variants, investigations in heterologous expression systems may not sufficiently mimic the pathophysiological situation in pain patients, and single nucleotide variants in other genes or modulatory proteins are necessary for these specific variants to show their effect. Our findings stress that biophysical investigations of ion channel mutations need to be evaluated with care and should preferably be supplemented with studies investigating the mutations in their context, ideally in human sensory neurons.


Asunto(s)
Canal de Sodio Activado por Voltaje NAV1.7 , Eritromelalgia , Células HEK293 , Humanos , Potenciales de la Membrana , Técnicas de Placa-Clamp
11.
Prog Neurobiol ; 198: 101906, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32905807

RESUMEN

The dual-specificity phosphatase (DUSP) family includes a heterogeneous group of protein phosphatases that dephosphorylate both phospho-tyrosine and phospho-serine/phospho-threonine residues within a single substrate. These protein phosphatases have many substrates and modulate diverse neural functions, such as neurogenesis, differentiation, and apoptosis. DUSP genes have furthermore been associated with mental disorders such as depression and neurological disorders such as Alzheimer's disease. Herein, we review the current literature on the DUSP family of genes concerning mental and neurological disorders. This review i) outlines the structure and general functions of DUSP genes, and ii) overviews the literature on DUSP genes concerning mental and neurological disorders, including model systems, while furthermore providing perspectives for future research.


Asunto(s)
Enfermedades del Sistema Nervioso , Fosfatasas de Especificidad Dual , Humanos , Enfermedades del Sistema Nervioso/genética , Neurogénesis , Fosfoproteínas Fosfatasas
12.
Brain Imaging Behav ; 15(3): 1300-1312, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32770446

RESUMEN

Odor modulates the experience of pain, but the neural basis of how the two sensory modalities, olfaction and pain, are linked in the central nervous system is far from clear. In this study, we investigated the mechanisms by which the brain modulates the pain experience under concurrent odorant stimulation. We conducted an fMRI study using a 2 × 3 factorial design, in which one of two temperatures (warm, hot) and one of three types of odors (pleasant, unpleasant, no odor) were presented simultaneously. "Hot" temperatures were individually determined as those perceived as painful (mean temperature = 46.9 °C). The non-painful "warm" temperature was set to 40 °C. Participants rated hot compared to warm stimuli as more intense and unpleasant, especially in the presence of an unpleasant odor. Parametric modeling on the intensity ratings activated the pain network, covering brain regions activated by the hot stimuli. The presence of an odor, irrespective of its valence, activated the amygdalae. In addition, the amygdalae showed stimulus-dependent functional couplings with the right supramarginal gyrus and with the left superior frontal gyrus. The coupling between the right amygdala and the left superior frontal gyrus was related to the intensity and unpleasantness ratings of the pain experience. Our results suggest that these functional connections may reflect the integrating process of the two sensory modalities, enabling olfactory influence on the pain experience.


Asunto(s)
Imagen por Resonancia Magnética , Odorantes , Calor , Humanos , Dolor/diagnóstico por imagen , Olfato
13.
Cell Tissue Res ; 383(1): 507-524, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33355709

RESUMEN

Evolutionarily, olfaction is one of the oldest senses and pivotal for an individual's health and survival. The olfactory bulb (OB), as the first olfactory relay station in the brain, is known to heavily process sensory information. To adapt to an animal's needs, OB activity can be influenced by many factors either from within (intrinsic neuromodulation) or outside (extrinsic neuromodulation) the OB which include neurotransmitters, neuromodulators, hormones, and neuropeptides. Extrinsic sources seem to be of special importance as the OB receives massive efferent input from numerous brain centers even outweighing the sensory input from the nose. Here, we review neuromodulatory processes in the rodent OB from such extrinsic sources. We will discuss extrinsic neuromodulation according to points of origin, receptors involved, affected circuits, and changes in behavior. In the end, we give a brief outlook on potential future directions in research on neuromodulation in the OB.


Asunto(s)
Bulbo Olfatorio/fisiología , Animales , Roedores
14.
J Neurosci ; 40(38): 7269-7285, 2020 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-32817250

RESUMEN

Processing of olfactory information is modulated by centrifugal projections from cortical areas, yet their behavioral relevance and underlying neural mechanisms remain unclear in most cases. The anterior olfactory nucleus (AON) is part of the olfactory cortex, and its extensive connections to multiple upstream and downstream brain centers place it in a prime position to modulate early sensory information in the olfactory system. Here, we show that optogenetic activation of AON neurons in awake male and female mice was not perceived as an odorant equivalent cue. However, AON activation during odorant presentation reliably suppressed behavioral odor responses. This AON-mediated effect was fast and constant across odors and concentrations. Likewise, activation of glutamatergic AON projections to the olfactory bulb (OB) transiently inhibited the excitability of mitral/tufted cells (MTCs) that relay olfactory input to the cortex. Single-unit MTC recordings revealed that optogenetic activation of glutamatergic AON terminals in the OB transiently decreased sensory-evoked MTC spiking, regardless of the strength or polarity of the sensory response. The reduction in MTC firing during optogenetic stimulation was confirmed in recordings in awake mice. These findings suggest that glutamatergic AON projections to the OB impede early olfactory signaling by inhibiting OB output neurons, thereby dynamically gating sensory throughput to the cortex.SIGNIFICANCE STATEMENT The anterior olfactory nucleus (AON) as an olfactory information processing area sends extensive projections to multiple brain centers, but the behavioral consequences of its activation have been scarcely investigated. Using behavioral tests in combination with optogenetic manipulation, we show that, in contrast to what has been suggested previously, the AON does not seem to form odor percepts but instead suppresses behavioral odor responses across odorants and concentrations. Furthermore, this study shows that AON activation inhibits olfactory bulb output neurons in both anesthetized as well as awake mice, pointing to a potential mechanism by which the olfactory cortex can actively and dynamically gate sensory throughput to higher brain centers.


Asunto(s)
Bulbo Olfatorio/metabolismo , Vías Olfatorias/metabolismo , Percepción Olfatoria , Transmisión Sináptica , Animales , Femenino , Ácido Glutámico/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas Aferentes/metabolismo , Neuronas Aferentes/fisiología , Bulbo Olfatorio/fisiología , Vías Olfatorias/fisiología , Olfato
15.
Sci Rep ; 10(1): 10696, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32612119

RESUMEN

Basal forebrain modulation of central circuits is associated with active sensation, attention, and learning. While cholinergic modulations have been studied extensively the effect of non-cholinergic basal forebrain subpopulations on sensory processing remains largely unclear. Here, we directly compare optogenetic manipulation effects of two major basal forebrain subpopulations on principal neuron activity in an early sensory processing area, i.e. mitral/tufted cells (MTCs) in the olfactory bulb. In contrast to cholinergic projections, which consistently increased MTC firing, activation of GABAergic fibers from basal forebrain to the olfactory bulb leads to differential modulation effects: while spontaneous MTC activity is mainly inhibited, odor-evoked firing is predominantly enhanced. Moreover, sniff-triggered averages revealed an enhancement of maximal sniff evoked firing amplitude and an inhibition of firing rates outside the maximal sniff phase. These findings demonstrate that GABAergic neuromodulation affects MTC firing in a bimodal, sensory-input dependent way, suggesting that GABAergic basal forebrain modulation could be an important factor in attention mediated filtering of sensory information to the brain.


Asunto(s)
Bulbo Olfatorio/fisiología , Vías Olfatorias/fisiología , Percepción Olfatoria/fisiología , Olfato/fisiología , Animales , Channelrhodopsins/metabolismo , Neuronas Colinérgicas/fisiología , Femenino , Neuronas GABAérgicas/fisiología , Masculino , Ratones , Ratones Transgénicos , Odorantes/análisis , Olfatometría/métodos , Bulbo Olfatorio/citología
16.
Mol Neurobiol ; 57(9): 3646-3657, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32564285

RESUMEN

Understanding non-motor symptoms of Parkinson's disease is important in order to unravel the underlying molecular mechanisms of the disease. Olfactory dysfunction is an early stage, non-motor symptom which occurs in 95% of Parkinson's disease patients. Mitochondrial dysfunction is a key feature in Parkinson's disease and importantly contributes to the selective loss of dopaminergic neurons the substantia nigra pars compacta. The olfactory bulb, the first olfactory processing station, also contains dopaminergic neurons, which modulate odor information and thereby enable odor detection as well as odor discrimination. MitoPark mice are a genetic model for Parkinson's disease with severe mitochondrial dysfunction, reproducing the differential vulnerability of dopaminergic neurons in the midbrain. These animals were used to investigate the impact of mitochondrial dysfunction on olfactory-related behavior and olfactory bulb dopaminergic neuron survival. Odor detection was severely impaired in MitoPark mice. Interestingly, only the small anaxonic dopaminergic subpopulation, which is continuously replenished by neurogenesis, was moderately reduced in number, much less compared with dopaminergic neurons in the midbrain. As a potential compensatory response, an enhanced mobilization of progenitor cells was found in the subventricular zone. These results reveal a high robustness of dopaminergic neurons located in the olfactory bulb towards mitochondrial impairment, in striking contrast to their midbrain counterparts.


Asunto(s)
Neuronas Dopaminérgicas/patología , Mitocondrias/patología , Odorantes , Bulbo Olfatorio/patología , Animales , Recuento de Células , Proteínas de Unión al ADN/metabolismo , Transporte de Electrón , Proteínas del Grupo de Alta Movilidad/metabolismo , Mesencéfalo/patología , Ratones Endogámicos C57BL , Neostriado/metabolismo , Degeneración Nerviosa/patología , Factor de Transcripción PAX6/metabolismo , Células Madre/metabolismo , Sustancia Negra/metabolismo , Factores de Tiempo , Tirosina 3-Monooxigenasa/metabolismo
18.
J Neurosci ; 40(21): 4203-4218, 2020 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-32312886

RESUMEN

The accessory olfactory system controls social and sexual behavior. In the mouse accessory olfactory bulb, the first central stage of information processing along the accessory olfactory pathway, projection neurons (mitral cells) display infra-slow oscillatory discharge with remarkable periodicity. The physiological mechanisms that underlie this default output state, however, remain controversial. Moreover, whether such rhythmic infra-slow activity patterns exist in awake behaving mice and whether such activity reflects the functional organization of the accessory olfactory bulb circuitry remain unclear. Here, we hypothesize that mitral cell ensembles form synchronized microcircuits that subdivide the accessory olfactory bulb into segregated functional clusters. We use a miniature microscope to image the Ca2+ dynamics within the apical dendritic compartments of large mitral cell ensembles in vivo We show that infra-slow periodic patterns of concerted neural activity, indeed, reflect the idle state of accessory olfactory bulb output in awake male and female mice. Ca2+ activity profiles are distinct and glomerulus-specific. Confocal time-lapse imaging in acute slices reveals that groups of mitral cells assemble into microcircuits that exhibit correlated Ca2+ signals. Moreover, electrophysiological profiling of synaptic connectivity indicates functional coupling between mitral cells. Our results suggest that both intrinsically rhythmogenic neurons and neurons entrained by fast synaptic drive are key elements in organizing the accessory olfactory bulb into functional microcircuits, each characterized by a distinct default pattern of infra-slow rhythmicity.SIGNIFICANCE STATEMENT Information processing in the accessory olfactory bulb (AOB) plays a central role in conspecific chemosensory communication. Surprisingly, many basic physiological principles that underlie neuronal signaling in the AOB remain elusive. Here, we show that AOB projection neurons (mitral cells) form parallel synchronized ensembles both in vitro and in vivo Infra-slow synchronous oscillatory activity within AOB microcircuits thus adds a new dimension to chemosensory coding along the accessory olfactory pathway.


Asunto(s)
Red Nerviosa/fisiología , Neuronas/fisiología , Bulbo Olfatorio/fisiología , Vías Olfatorias/fisiología , Potenciales de Acción/fisiología , Animales , Ratones
19.
Chem Senses ; 42(5): 375-379, 2017 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-28379355

RESUMEN

Interactions with the environment depend not only on sensory perception of external stimuli but also on processes of neuromodulation regulated by the internal state of an organism. These processes allow regulation of stimulus detection to match the demands of an organism influenced by its general brain state (satiety, wakefulness/sleep state, attentiveness, arousal, learning etc.). The sense of smell is initiated by sensory neurons located in the nasal cavity that recognize environmental odorants and project axons into the olfactory bulb (OB), where they form synapses with several types of neurons. Modulations of early synaptic circuits are particularly important since these can affect all subsequent processing steps. While the precise mechanisms have not been fully elucidated, work from many labs has demonstrated that the activity of neurons in the OB and cortex can be modulated by different factors inducing specific changes to olfactory information processing. The symposium "Neuromodulation in Chemosensory Pathways" at the International Symposium on Olfaction and Taste (ISOT 2016) highlighted some of the most recent advances in state-dependent network modulations of the mouse olfactory system including modulation mediated by specific neurotransmitters and neuroendocrine molecules, involving pharmacological, electrophysiological, learning, and behavioral approaches.


Asunto(s)
Neurotransmisores/metabolismo , Bulbo Olfatorio/metabolismo , Células Receptoras Sensoriales/metabolismo , Olfato , Animales
20.
J Neurosci ; 36(25): 6820-35, 2016 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-27335411

RESUMEN

UNLABELLED: Serotonergic neurons in the brainstem raphe nuclei densely innervate the olfactory bulb (OB), where they can modulate the initial representation and processing of olfactory information. Serotonergic modulation of sensory responses among defined OB cell types is poorly characterized in vivo Here, we used cell-type-specific expression of optical reporters to visualize how raphe stimulation alters sensory responses in two classes of GABAergic neurons of the mouse OB glomerular layer, periglomerular (PG) and short axon (SA) cells, as well as mitral/tufted (MT) cells carrying OB output to piriform cortex. In PG and SA cells, brief (1-4 s) raphe stimulation elicited a large increase in the magnitude of responses linked to inhalation of ambient air, as well as modest increases in the magnitude of odorant-evoked responses. Near-identical effects were observed when the optical reporter of glutamatergic transmission iGluSnFR was expressed in PG and SA cells, suggesting enhanced excitatory input to these neurons. In contrast, in MT cells imaged from the dorsal OB, raphe stimulation elicited a strong increase in resting GCaMP fluorescence with only a slight enhancement of inhalation-linked responses to odorant. Finally, optogenetically stimulating raphe serotonergic afferents in the OB had heterogeneous effects on presumptive MT cells recorded extracellularly, with an overall modest increase in resting and odorant-evoked responses during serotonergic afferent stimulation. These results suggest that serotonergic afferents from raphe dynamically modulate olfactory processing through distinct effects on multiple OB targets, and may alter the degree to which OB output is shaped by inhibition during behavior. SIGNIFICANCE STATEMENT: Modulation of the circuits that process sensory information can profoundly impact how information about the external world is represented and perceived. This study investigates how the serotonergic system modulates the initial processing of olfactory information by the olfactory bulb, an obligatory relay between sensory neurons and cortex. We find that serotonergic projections from the raphe nuclei to the olfactory bulb dramatically enhance the responses of two classes of inhibitory interneurons to sensory input, that this effect is mediated by increased glutamatergic drive onto these neurons, and that serotonergic afferent activation alters the responses of olfactory bulb output neurons in vivo These results elucidate pathways by which neuromodulatory systems can dynamically regulate brain circuits during behavior.


Asunto(s)
Bulbo Olfatorio/citología , Vías Olfatorias/fisiología , Núcleos del Rafe/citología , Neuronas Serotoninérgicas/fisiología , Serotonina/metabolismo , Olfato/fisiología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/genética , Animales , Cadherinas/genética , Cadherinas/metabolismo , Señalización del Calcio/efectos de los fármacos , Señalización del Calcio/fisiología , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/farmacología , Femenino , Glutamato Descarboxilasa/genética , Glutamato Descarboxilasa/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Fluorescentes Verdes/farmacología , Masculino , Ratones , Ratones Transgénicos , Odorantes , Optogenética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes de Fusión/farmacología , Proteínas de Transporte de Serotonina en la Membrana Plasmática/genética , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Olfato/genética , Tirosina 3-Monooxigenasa/genética , Tirosina 3-Monooxigenasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...