Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Physiol Biochem ; 167: 678-690, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34488153

RESUMEN

Eggplant fruits are normally harvested and marketed when they reach the commercial maturity, that precedes the physiological ripening when dramatic changes in taste, composition and peel color take place. The biochemical changes in fruit peel across the developmental stages, characterized also by a sizeable decrement of anthocyanins, were studied in four eggplant genotypes differing for fruit pigmentation. HPLC-DAD, HPLC-ESI-MS and NMR analyses identified naringenin chalcone and naringenin 7-O-glucoside as the main phenolic compounds in extracts from the physiological ripe stage, along with compounds tentatively identified as glycosylated naringenin chalcone, naringenin and kaempferol. On average, the levels of anthocyanins, responsible for the peel pigmentation, dropped by 75% during development, while, surprisingly, the level of total phenols showed a slight decrease of 16%, with a final concentration of more than 1000 mg/100g dw. RT-qPCR expression profiling of nine genes coding for enzymes putatively acting at different steps of the involved pathways showed modulation mostly consistent with the observed changes in phenolic composition, with a remarkable decrease in the activity of flavonol reductase and an increase in flavonol synthase during berry development. Antioxidant activity monitored by peroxyl scavenging was similar at all developmental stages while Fremy's analysis evidenced a slight decrement at full physiological ripening. These results are valuable to address the improvement of eggplant commercial fruit quality and the valorization of unmarketable physiological ripe fruits, especially for the newly accumulation of the health-promoting compounds chalcones and flavanones.


Asunto(s)
Solanum melongena , Antocianinas , Antioxidantes , Frutas/química , Fenoles/análisis , Solanum melongena/genética
2.
J Integr Plant Biol ; 62(4): 487-508, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31087763

RESUMEN

Eggplant (Solanum melongena L.) yield is highly sensitive to N fertilization, the excessive use of which is responsible for environmental and human health damage. Lowering N input together with the selection of improved Nitrogen-Use-Efficiency (NUE) genotypes, more able to uptake, utilize, and remobilize N available in soils, can be challenging to maintain high crop yields in a sustainable agriculture. The aim of this study was to explore the natural variation among eggplant accessions from different origins, in response to Low (LN) and High (HN) Nitrate (NO3 - ) supply, to identify NUE-contrasting genotypes and their NUE-related traits, in hydroponic and greenhouse pot experiments. Two eggplants, AM222 and AM22, were identified as N-use efficient and inefficient, respectively, in hydroponic, and these results were confirmed in a pot experiment, when crop yield was also evaluated. Overall, our results indicated the key role of N-utilization component (NUtE) to confer high NUE. The remobilization of N from leaves to fruits may be a strategy to enhance NUtE, suggesting glutamate synthase as a key enzyme. Further, omics technologies will be used for focusing on C-N metabolism interacting networks. The availability of RILs from two other selected NUE-contrasting genotypes will allow us to detect major genes/quantitative trait loci related to NUE.


Asunto(s)
Variación Genética , Nitratos/metabolismo , Nitrógeno/metabolismo , Solanum melongena/genética , Solanum melongena/metabolismo , Análisis de Varianza , Biomasa , Clorofila/metabolismo , Ecotipo , Flavonoides/metabolismo , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas , Patrón de Herencia/genética , Hojas de la Planta/metabolismo , Raíces de Plantas/anatomía & histología , Brotes de la Planta/anatomía & histología , Tallos de la Planta/metabolismo , Carácter Cuantitativo Heredable
3.
Front Plant Sci ; 9: 401, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29643862

RESUMEN

We have characterized the simple sequence repeat (SSR) markers of the eggplant (Solanum melongena) using a recent high quality sequence of its whole genome. We found nearly 133,000 perfect SSRs, a density of 125.5 SSRs/Mbp, and also about 178,400 imperfect SSRs. Of the perfect SSRs, 15.6% were complex, with two stretches of repeats separated by an intervening block of <100 nt. Di- and trinucleotide SSRs accounted, respectively, for 43 and 37% of the total. The SSRs were classified according to their number of repeats and overall length, and were assigned to their linkage group. We found 2,449 of the perfect SSRs in 2,086 genes, with an overall density of 18.5 SSRs/Mbp across the gene space; 3,524 imperfect SSRs were present in 2,924 genes at a density of 26.7 SSRs/Mbp. Putative functions were assigned via ontology to genes containing at least one SSR. Using this data we developed an "Eggplant Microsatellite DataBase" (EgMiDB) which permits identification of SSR markers in terms of their location on the genome, type of repeat (perfect vs. imperfect), motif type, sequence, repeat number and genomic/gene context. It also suggests forward and reverse primers. We employed an in silico PCR analysis to validate these SSR markers, using as templates two CDS sets and three assembled transcriptomes obtained from diverse eggplant accessions.

4.
Front Plant Sci ; 7: 1031, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27486463

RESUMEN

Eggplant, pepper, and tomato are the most exploited berry-producing vegetables within the Solanaceae family. Their genomes differ in size, but each has 12 chromosomes which have undergone rearrangements causing a redistribution of loci. The genome sequences of all three species are available but differ in coverage, assembly quality and percentage of anchorage. Determining their syntenic relationship and QTL orthology will contribute to exploit genomic resources and genetic data for key agronomic traits. The syntenic analysis between tomato and pepper based on the alignment of 34,727 tomato CDS to the pepper genome sequence, identified 19,734 unique hits. The resulting synteny map confirmed the 14 inversions and 10 translocations previously documented, but also highlighted 3 new translocations and 4 major new inversions. Furthermore, each of the 12 chromosomes exhibited a number of rearrangements involving small regions of 0.5-0.7 Mbp. Due to high fragmentation of the publicly available eggplant genome sequence, physical localization of most eggplant QTL was not possible, thus, we compared the organization of the eggplant genetic map with the genome sequence of both tomato and pepper. The eggplant/tomato syntenic map confirmed all the 10 translocations but only 9 of the 14 known inversions; on the other hand, a newly detected inversion was recognized while another one was not confirmed. The eggplant/pepper syntenic map confirmed 10 translocations and 8 inversions already detected and suggested a putative new translocation. In order to perform the assessment of eggplant and pepper QTL orthology, the eggplant and pepper sequence-based markers located in their respective genetic map were aligned onto the pepper genome. GBrowse in pepper was used as reference platform for QTL positioning. A set of 151 pepper QTL were located as well as 212 eggplant QTL, including 76 major QTL (PVE ≥ 10%) affecting key agronomic traits. Most were confirmed to cluster in orthologous chromosomal regions. Our results highlight that the availability of genome sequences for an increasing number of crop species and the development of "ultra-dense" physical maps provide new and key tools for detailed syntenic and orthology studies between related plant species.

5.
Front Plant Sci ; 7: 256, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26973692

RESUMEN

Eggplant berries are a source of health-promoting metabolites including antioxidant and nutraceutical compounds, mainly anthocyanins and chlorogenic acid; however, they also contain some anti-nutritional compounds such as steroidal glycoalkaloids (SGA) and saponins, which are responsible for the bitter taste of the flesh and with potential toxic effects on humans. Up to now, Quantitative Trait Loci (QTL) for the metabolic content are far from being characterized in eggplant, thus hampering the application of breeding programs aimed at improving its fruit quality. Here we report on the identification of some QTL for the fruit metabolic content in an F2 intraspecific mapping population of 156 individuals, obtained by crossing the eggplant breeding lines "305E40" × "67/3." The same population was previously employed for the development of a RAD-tag based linkage map and the identification of QTL associated to morphological and physiological traits. The mapping population was biochemically characterized for both fruit basic qualitative data, like dry matter, °Brix, sugars, and organic acids, as well as for health-related compounds such chlorogenic acid, (the main flesh monomeric phenol), the two peel anthocyanins [i.e., delphinidin-3-rutinoside (D3R) and delphinidin-3-(p- coumaroylrutinoside)-5-glucoside (nasunin)] and the two main steroidal glycoalkaloids, solasonine, and solamargine. For most of the traits, one major QTL (PVE ≥10%) was spotted and putative orthologies with other Solanaceae crops are discussed. The present results supply valuable information to eggplant breeders on the inheritance of key fruit quality traits, thus providing potential tools to assist future breeding programs.

6.
Food Chem ; 194: 835-42, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26471625

RESUMEN

Physico-chemical traits of three eggplant genotypes ("Tunisina", "Buia" and "L 305") were evaluated before and after two cooking treatments (grilling and boiling). Different genotypes revealed different changes after cooking, with "Tunisina" showing a better retention of phytochemicals with respect to other two genotypes. The main physical phenomena were water loss during grilling, and dry matter loss after boiling. Chlorogenic acid, the main phenolic in eggplant, resulted higher in grilled samples, while delphinidin glycosides resulted more retained in boiled samples. Glycoalkaloids, thiols and biogenic amines were generally stable, while 5-hydroxy-methyl-furfural was found only in grilled samples. Interestingly, Folin-Ciocalteu index and free radical scavenging capacity, measured with three different assays, were generally increased after cooking, with a greater formation of antioxidant substances in grilled samples. NMR relaxation experiments clarified the hypothesis about the changes of eggplant compounds in terms of decomposition of larger molecules and production of small ones after cooking.


Asunto(s)
Antioxidantes/química , Frutas/química , Espectroscopía de Resonancia Magnética/métodos , Fenoles/análisis , Solanum melongena/química , Antioxidantes/análisis , Ácido Clorogénico/análisis , Fitoquímicos/análisis
7.
Front Plant Sci ; 6: 1233, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26858726

RESUMEN

Phenylpropanoids are major secondary metabolites in eggplant (Solanum melongena) fruits. Chlorogenic acid (CGA) accounts for 70-90% of total phenolics in flesh tissues, while anthocyanins are mainly present in the fruit skin. As a contribution to the understanding of the peculiar accumulation of these health-promoting metabolites in eggplant, we report on metabolite abundance, regulation of CGA and anthocyanin biosynthesis, and characterization of candidate CGA biosynthetic genes in S. melongena. Higher contents of CGA, Delphinidin 3-rutinoside, and rutin were found in eggplant fruits compared to other tissues, associated to an elevated transcript abundance of structural genes such as PAL, HQT, DFR, and ANS, suggesting that active in situ biosynthesis contributes to anthocyanin and CGA accumulation in fruit tissues. Putative orthologs of the two CGA biosynthetic genes PAL and HQT, as well as a variant of a MYB1 transcription factor showing identity with group six MYBs, were isolated from an Occidental S. melongena traditional variety and demonstrated to differ from published sequences from Asiatic varieties. In silico analysis of the isolated SmPAL1, SmHQT1, SmANS, and SmMyb1 promoters revealed the presence of several Myb regulatory elements for the biosynthetic genes and unique elements for the TF, suggesting its involvement in other physiological roles beside phenylpropanoid biosynthesis regulation. Transient overexpression in Nicotiana benthamiana leaves of SmMyb1 and of a C-terminal SmMyb1 truncated form (SmMyb1Δ9) resulted in anthocyanin accumulation only of SmMyb1 agro-infiltrated leaves. A yeast two-hybrid assay confirmed the interaction of both SmMyb1 and SmMyb1Δ9 with an anthocyanin-related potato bHLH1 TF. Interestingly, a doubled amount of CGA was detected in both SmMyb1 and SmMyb1Δ9 agro-infiltrated leaves, thus suggesting that the N-terminal region of SmMyb1 is sufficient to activate its synthesis. These data suggest that a deletion of the C-terminal region of SmMyb1 does not limit its capability to regulate CGA accumulation, but impairs anthocyanin biosynthesis. To our knowledge, this is the first study reporting a functional elucidation of the role of the C-term conserved domain in MYB activator proteins.

8.
Plant Biotechnol J ; 9(6): 684-92, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20955179

RESUMEN

Since decades, plant male sterility is considered a powerful tool for biological containment to minimize unwanted self-pollination for hybrid seed production. Furthermore, prevention of pollen dispersal also answers to concerns regarding transgene flow via pollen from Genetically Modified (GM) crops to traditional crop fields or wild relatives. We induced male sterility by suppressing endogenous general transcription factor genes, TAFs, using anther-specific promoters combined with artificial microRNA (amiRNA) technology (Schwab et al., 2006). The system was made reversible by the ethanol inducible expression of an amiRNA-insensitive form of the target gene. We provide proof of concept in eggplant, a cultivated crop belonging to the Solanaceae family that includes many important food crops. The transgenic eggplants that we generated are completely male sterile and fertility can be fully restored by short treatments with ethanol, confirming the efficiency but also the reliability of the system in view of open field cultivation. By combining this system with induced parthenocarpy (Rotino et al., 1997), we provide a novel example of complete transgene containment in eggplant, which enables biological mitigation measures for the benefit of coexistence or biosafety purposes for GM crop cultivation.


Asunto(s)
Infertilidad Vegetal/genética , Solanum melongena/fisiología , Factores de Transcripción/genética , Productos Agrícolas/genética , Etanol/farmacología , Regulación de la Expresión Génica de las Plantas , MicroARNs/genética , Plantas Modificadas Genéticamente/fisiología , Regiones Promotoras Genéticas , Solanum melongena/efectos de los fármacos , Solanum melongena/genética , Factores Asociados con la Proteína de Unión a TATA/genética , Factores Asociados con la Proteína de Unión a TATA/metabolismo , Factores de Transcripción/metabolismo , Transgenes
9.
J Agric Food Chem ; 58(13): 7597-603, 2010 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-20527988

RESUMEN

The purpose of the present study was to investigate the levels of either the nutraceutical and health-promoting compounds or the antioxidant properties of innovative eggplant (Solanum melongena L.) genotypes tolerant and/or resistant to fungi, derived from conventional and non-conventional breeding methodologies (i.e., sexual interspecific hybridization, interspecific protoplast electrofusion, androgenesis, and backcross cycles) in comparison with their allied and cultivated parents. Chemical measures of soluble refractometric residue (SRR), glycoalkaloids (solamargine and solasonine), chlorogenic acid (CA), delphinidin 3-rutinoside (D3R), total phenols (TP), polyphenoloxidase (PPO) activity, antiradical activity on superoxide anion and hydroxyl radical were carried out in raw fruit and peel of 57 eggplant advanced introgression lines (ILs), of three eggplant recurrent genotypes and of three allied species during 2005 and 2006. The majority of the ILs, obtained after several backcross cycles, showed positive characteristics with respect to the allied parents such as good levels of SRR, CA, D3R, TP, PPO activity, the scavenging activity against superoxide anion and hydroxyl radical and, in particular, significantly (p

Asunto(s)
Extractos Vegetales/análisis , Solanum melongena/química , Solanum melongena/genética , Antioxidantes/análisis , Cruzamiento , Ácido Clorogénico/análisis , Frutas/química , Frutas/genética , Genotipo , Fenoles/análisis
10.
J Agric Food Chem ; 58(6): 3371-9, 2010 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-20187646

RESUMEN

The aim of this study was to compare the amount and activity of phytonutrients in raw, grilled, and boiled eggplant fruit using chemical measures and a biological assay of oxidative bursts in human neutrophils. The thermally treated samples showed various changes in their chemical composition (dry matter, soluble solids, acidity, and the amount of alcohol insoluble substances) due to the cooking processes and were much richer in the main phenolic compounds such as chlorogenic and caffeic acids, which are known to be antioxidants. Consequently, their free radical scavenging activity was significantly higher, especially that of superoxide anion. The biological assay of oxidative bursts from human neutrophils in the presence of N-formyl-methionyl-leucyl-phenylalanine confirmed the greater activity of extracts of the cooked eggplants with respect to raw eggplants. Successive extract dilutions showed a significant activity up to 1.25 microg/mL after cooking, while raw fruits resulted in an activity up to 10.00 microg/mL. These results showed that the thermal treatment commonly used before consumption can increase the content and biological activity of antioxidant compounds of eggplants.


Asunto(s)
Antioxidantes/farmacología , Manipulación de Alimentos , Neutrófilos/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/farmacología , Solanum melongena/química , Antioxidantes/análisis , Células Cultivadas , Calor , Humanos , Neutrófilos/metabolismo , Extractos Vegetales/análisis
11.
BMC Res Notes ; 2: 143, 2009 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-19619340

RESUMEN

BACKGROUND: Fruit normally develops from the ovary after pollination and fertilization. However, the ovary can also generate seedless fruit without fertilization by parthenocarpy. Parthenocarpic fruit development has been obtained in tomato (Solanum lycopersicum) by genetic modification using auxin-synthesising gene(s) (DefH9-iaaM; DefH9-RI-iaaM) expressed specifically in the placenta and ovules. FINDINGS: We have performed a cDNA Amplified Fragment Length Polymorphism (cDNA-AFLP) analysis on pre-anthesis tomato flower buds (0.5 cm long) collected from DefH9-iaaM and DefH9-RI-iaaM parthenocarpic and wild-type plants, with the aim to identify genes involved in very early phases of tomato fruit development. We detected 212 transcripts differentially expressed in auxin-ipersynthesising pre-anthesis flower buds, 65 of them (31%) have unknown function. Several differentially expressed genes show homology to genes involved in protein trafficking and protein degradation via proteasome. These processes are crucial for auxin cellular transport and signaling, respectively. CONCLUSION: The data presented might contribute to elucidate the molecular basis of the fruiting process and to develop new methods to confer parthenocarpy to species of agronomic interest. In a recently published work, we have demonstrated that one of the genes identified in this screening, corresponding to #109 cDNA clone, regulates auxin-dependent fruit initiation and its suppression causes parthenocarpic fruit development in tomato.

12.
J Exp Bot ; 60(2): 651-61, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19264761

RESUMEN

MADS-box genes have been shown to play a role in the formation of fruits, both in Arabidopsis and in tomato. In peach, two C-class MADS-box genes have been isolated. Both of them are expressed during flower and mesocarp development. Here a detailed analysis of a gene that belongs to the PLENA subfamily of MADS-box genes is shown. The expression of this PLENA-like gene (PpPLENA) increases during fruit ripening, and its ectopic expression in tomato plants causes the transformation of sepals into carpel-like structures that become fleshy and ripen like real fruits. Interestingly, the transgenic berries constitutively expressing the PpPLENA gene show an accelerated ripening, as judged by the expression of genes that are important for tomato fruit ripening. It is suggested that PpPLENA might interfere with the endogenous activity of TAGL1, thereby activating the fruit ripening pathway earlier compared with wild-type tomato plants.


Asunto(s)
Flores/crecimiento & desarrollo , Flores/genética , Frutas/crecimiento & desarrollo , Frutas/genética , Genes de Plantas , Proteínas de Dominio MADS/genética , Prunus/genética , Flores/citología , Flores/ultraestructura , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Solanum lycopersicum/genética , Datos de Secuencia Molecular , Filogenia
13.
Arch Microbiol ; 190(1): 67-77, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18415080

RESUMEN

We introduced into Rhizobium leguminosarum bv. viciae LPR1105 a new pathway for the biosynthesis of the auxin, indole-3-acetic acid (IAA), under the control of a stationary phase-activated promoter active both in free-living bacteria and bacteroids. The newly introduced genes are the iaaM gene from Pseudomonas savastanoi and the tms2 gene from Agrobacterium tumefaciens. Free-living bacteria harbouring the promoter-iaaMtms2 construct release into the growth medium 14-fold more IAA than the wild-type parental strain. This IAA overproducing R. l. viciae, the RD20 strain, elicits the development of vetch root nodules containing up to 60-fold more IAA than nodules infected by the wild-type strain LPR1105. Vetch root nodules derived from RD20 are fewer in number per plant, heavier in terms of dry weight and show an enlarged and more active meristem. A significant increase in acetylene reduction activity was measured in nodules elicited in vetch by RD20.


Asunto(s)
Ácidos Indolacéticos/metabolismo , Rhizobium leguminosarum/genética , Rhizobium leguminosarum/metabolismo , Nódulos de las Raíces de las Plantas/crecimiento & desarrollo , Vicia/microbiología , Acetileno/metabolismo , Agrobacterium tumefaciens/genética , Proteínas Bacterianas/genética , ADN Bacteriano/genética , Genes Bacterianos , Fijación del Nitrógeno , Reguladores del Crecimiento de las Plantas/metabolismo , Plásmidos , Regiones Promotoras Genéticas , Pseudomonas/genética , Proteínas Recombinantes/genética , Nódulos de las Raíces de las Plantas/microbiología , Simbiosis , Vicia/crecimiento & desarrollo
14.
J Hered ; 99(3): 304-15, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18245797

RESUMEN

Gene exchanges between Solanum melongena and its allied relative Solanum aethiopicum are a crucial prerequisite for introgression of useful traits from the allied species into the cultivated eggplant. In order to evaluate the extent of genetic recombination between the 2 species, biochemical and molecular markers were employed. A dihaploid population obtained through anther culture of the corresponding tetraploid somatic hybrids was genetically analyzed. The extent of disomic/tetrasomic inheritance and segregation ratios of 3 isozyme systems and intersimple sequence repeat (ISSR) markers were evaluated. The dihaploids, being derived from microspores, allowed for simple, complete, and accurate analyses. The segregation of 280 ISSR markers (110 aethiopicum-specific, 104 melongena-specific, and 66 monomorphic) were evaluated in 71 dihaploids. According to the genetic constitution (simplex/duplex/triplex), almost 64% of the fragments revealed the tetrasomic and/or disomic inheritance. With regard to the assigned species-specific fragments, 68% and 4% were unambiguously the result of tetrasomic and disomic inheritance, respectively. Twenty-four of the 66 monomorphic ISSRs were inherited according to random chromatid segregation. The phenotypes of glucose-6-phosphate dehydrogenase (G-6-PDH), 6-phosphogluconate dehydrogenase (6-PGDH), and shikimate dehydrogenase (SKDH) were studied in 70 dihaploids and inferences were made about the allelic state of their 5 loci. The isozyme markers segregated in the dihaploids in a distorted manner, their segregations did not fit in with any of the expected segregation ratios. However, tetrasomic inheritance might be suggested for G-6-PDH 2 and SKDH 1 loci. Our results demonstrated that gene exchanges occurred readily in the somatic hybrids between S. melongena and S. aethiopicum gr. Gilo.


Asunto(s)
Isoenzimas/análisis , Poliploidía , Secuencias Repetitivas de Ácidos Nucleicos , Análisis de Secuencia de ADN , Solanum melongena/genética , Solanum/genética , Cruzamiento , Segregación Cromosómica , Hibridación Genética , Recombinación Genética
15.
BMC Biotechnol ; 2: 1, 2002.
Artículo en Inglés | MEDLINE | ID: mdl-11818033

RESUMEN

BACKGROUND: Genetic engineering of parthenocarpy confers to horticultural plants the ability to produce fruits under environmental conditions that curtail fruit productivity and quality. The DefH9-iaaM transgene, whose predicted action is to confer auxin synthesis specifically in the placenta, ovules and derived tissues, has been shown to confer parthenocarpy to several plant species (tobacco, eggplant, tomato) and varieties. RESULTS: UC82 tomato plants, a typical cultivar used by the processing industry, transgenic for the DefH9-iaaM gene produce parthenocarpic fruits that are malformed. UC82 plants transgenic for the DefH9-RI-iaaM, a DefH9-iaaM derivative gene modified in its 5'ULR by replacing 53 nucleotides immediately upstream of the AUG initiation codon with an 87 nucleotides-long sequence derived from the rolA intron sequence, produce parthenocarpic fruits of high quality. In an in vitro translation system, the iaaM mRNA, modified in its 5'ULR is translated 3-4 times less efficiently than the original transcript. An optimal expressivity of parthenocarpy correlates with a reduced transgene mRNA steady state level in DefH9-RI-iaaM flower buds in comparison to DefH9-iaaM flower buds. Consistent with the known function of the iaaM gene, flower buds transgenic for the DefH9-RI-iaaM gene contain ten times more IAA than control untransformed flower buds, but five times less than DefH9-iaaM flower buds. CONCLUSIONS: By using an auxin biosynthesis transgene downregulated at the post-transcriptional level, an optimal expressivity of parthenocarpy has been achieved in a genetic background not suitable for the original transgene. Thus, the method allows the generation of a wider range of expressivity of the desired trait in transgenic plants.


Asunto(s)
Industria de Alimentos/métodos , Partenogénesis/genética , Procesamiento Postranscripcional del ARN , Solanum lycopersicum/genética , Transgenes , Regiones no Traducidas 5'/genética , Proteínas Bacterianas/genética , Flores/química , Flores/embriología , Industria de Alimentos/tendencias , Regulación de la Expresión Génica de las Plantas/genética , Ácidos Indolacéticos/metabolismo , Intrones/genética , Oxigenasas de Función Mixta/genética , Mutagénesis/genética , Plantas Modificadas Genéticamente/genética , Regiones Promotoras Genéticas/genética , Pseudomonas/enzimología , Pseudomonas/genética , Proteínas Recombinantes de Fusión/genética , Rhizobium/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...