Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Transl Psychiatry ; 7(8): e1193, 2017 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-28786978

RESUMEN

Clinical evidence suggests that symptoms in premenstrual dysphoric disorder (PMDD) reflect abnormal responsivity to ovarian steroids. This differential steroid sensitivity could be underpinned by abnormal processing of the steroid signal. We used a pharmacometabolomics approach in women with prospectively confirmed PMDD (n=15) and controls without menstrual cycle-related affective symptoms (n=15). All were medication-free with normal menstrual cycle lengths. Notably, women with PMDD were required to show hormone sensitivity in an ovarian suppression protocol. Ovarian suppression was induced for 6 months with gonadotropin-releasing hormone (GnRH)-agonist (Lupron); after 3 months all were randomized to 4 weeks of estradiol (E2) or progesterone (P4). After a 2-week washout, a crossover was performed. Liquid chromatography/tandem mass spectrometry measured 49 steroid metabolites in serum. Values were excluded if >40% were below the limit of detectability (n=21). Analyses were performed with Wilcoxon rank-sum tests using false-discovery rate (q<0.2) for multiple comparisons. PMDD and controls had similar basal levels of metabolites during Lupron and P4-derived neurosteroids during Lupron or E2/P4 conditions. Both groups had significant increases in several steroid metabolites compared with the Lupron alone condition after treatment with E2 (that is, estrone-SO4 (q=0.039 and q=0.002, respectively) and estradiol-3-SO4 (q=0.166 and q=0.001, respectively)) and after treatment with P4 (that is, allopregnanolone (q=0.001 for both PMDD and controls), pregnanediol (q=0.077 and q=0.030, respectively) and cortexone (q=0.118 and q=0.157, respectively). Only sulfated steroid metabolites showed significant diagnosis-related differences. During Lupron plus E2 treatment, women with PMDD had a significantly attenuated increase in E2-3-sulfate (q=0.035) compared with control women, and during Lupron plus P4 treatment a decrease in DHEA-sulfate (q=0.07) compared with an increase in controls. Significant effects of E2 addback compared with Lupron were observed in women with PMDD who had significant decreases in DHEA-sulfate (q=0.065) and pregnenolone sulfate (q=0.076), whereas controls had nonsignificant increases (however, these differences did not meet statistical significance for a between diagnosis effect). Alterations of sulfotransferase activity could contribute to the differential steroid sensitivity in PMDD. Importantly, no differences in the formation of P4-derived neurosteroids were observed in this otherwise highly selected sample of women studied under controlled hormone exposures.


Asunto(s)
Estradiol/farmacología , Leuprolida/farmacología , Metaboloma/efectos de los fármacos , Trastorno Disfórico Premenstrual/metabolismo , Progesterona/farmacología , Adulto , Estudios Cruzados , Desoxicorticosterona/sangre , Estradiol/análogos & derivados , Estradiol/sangre , Estrona/sangre , Femenino , Humanos , Persona de Mediana Edad , Pregnanodiol/sangre , Pregnanolona/sangre , Adulto Joven
2.
Transl Psychiatry ; 6(9): e894, 2016 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-27648916

RESUMEN

Ketamine, at sub-anesthetic doses, is reported to rapidly decrease depression symptoms in patients with treatment-resistant major depressive disorder (MDD). Many patients do not respond to currently available antidepressants, (for example, serotonin reuptake inhibitors), making ketamine and its enantiomer, esketamine, potentially attractive options for treatment-resistant MDD. Although mechanisms by which ketamine/esketamine may produce antidepressant effects have been hypothesized on the basis of preclinical data, the neurobiological correlates of the rapid therapeutic response observed in patients receiving treatment have not been established. Here we use a pharmacometabolomics approach to map global metabolic effects of these compounds in treatment-refractory MDD patients upon 2 h from infusion with ketamine (n=33) or its S-enantiomer, esketamine (n=20). The effects of esketamine on metabolism were retested in the same subjects following a second exposure administered 4 days later. Two complementary metabolomics platforms were used to provide broad biochemical coverage. In addition, we investigated whether changes in particular metabolites correlated with treatment outcome. Both drugs altered metabolites related to tryptophan metabolism (for example, indole-3-acetate and methionine) and/or the urea cycle (for example, citrulline, arginine and ornithine) at 2 h post infusion (q<0.25). In addition, we observed changes in glutamate and circulating phospholipids that were significantly associated with decreases in depression severity. These data provide new insights into the mechanism underlying the rapid antidepressant effects of ketamine and esketamine, and constitute some of the first detailed metabolomics mapping for these promising therapies.


Asunto(s)
Trastorno Depresivo Mayor/tratamiento farmacológico , Trastorno Depresivo Resistente al Tratamiento/tratamiento farmacológico , Antagonistas de Aminoácidos Excitadores/uso terapéutico , Ketamina/uso terapéutico , Metabolómica , Adulto , Arginina/metabolismo , Citrulina/metabolismo , Trastorno Depresivo Mayor/metabolismo , Trastorno Depresivo Resistente al Tratamiento/metabolismo , Femenino , Ácido Glutámico/metabolismo , Humanos , Ácidos Indolacéticos/metabolismo , Infusiones Intravenosas , Masculino , Metionina/metabolismo , Persona de Mediana Edad , Ornitina/metabolismo , Fenotipo , Fosfolípidos/metabolismo , Triptófano/metabolismo , Urea/metabolismo
3.
CPT Pharmacometrics Syst Pharmacol ; 4(11): 669-79, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26783503

RESUMEN

Achieving hypertension (HTN) control and mitigating the adverse health effects associated with HTN continues to be a global challenge. Some individuals respond poorly to current HTN therapies, and mechanisms for response variation remain poorly understood. We used a nontargeted metabolomics approach (gas chromatography time-of-flight/mass spectrometry gas chromatography time-of-flight/mass spectrometry) measuring 489 metabolites to characterize metabolite signatures associated with treatment response to anti-HTN drugs, atenolol (ATEN), and hydrochlorothiazide (HCTZ), in white and black participants with uncomplicated HTN enrolled in the Pharmacogenomic Evaluation of Antihypertensive Responses study. Metabolite profiles were significantly different between races, and metabolite responses associated with home diastolic blood pressure (HDBP) response were identified. Metabolite pathway analyses identified gluconeogenesis, plasmalogen synthesis, and tryptophan metabolism increases in white participants treated with HCTZ (P < 0.05). Furthermore, we developed predictive models from metabolite signatures of HDBP treatment response (P < 1 × 10(-5)). As part of a quantitative systems pharmacology approach, the metabolites identified herein may serve as biomarkers for improving treatment decisions and elucidating mechanisms driving HTN treatment responses.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...