Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Foods Hum Nutr ; 78(1): 213-220, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36694053

RESUMEN

Soluble corn fiber (SCF) has demonstrated prebiotic effects in clinical studies. Using an in vitro mucosal simulator of the human intestinal microbial ecosystem (M-SHIME®) model, the effects of SCF treatment on colonic microbiota composition and metabolic activity and on host-microbiome interactions were evaluated using fecal samples from healthy donors of different ages (baby [≤ 2 years], n = 4; adult [18-45 years], n = 2; elderly [70 years], n = 1). During the 3-week treatment period, M-SHIME® systems were supplemented with SCF daily (baby, 1.5, 3, or 4.5 g/d; adult, 3 or 8.5 g/d; and elderly, 8.5 g/d). M-SHIME® supernatants were evaluated for their effect on the intestinal epithelial cell barrier and inflammatory responses in lipopolysaccharide. (LPS)-stimulated cells. Additionally, short-chain fatty acid (SCFA) production and microbial community composition were assessed. In the baby and adult models, M-SHIME® supernatants from SCF treated vessels protected Caco-2 membrane integrity from LPS-induced damage. SCF treatment resulted in the expansion of Bacteroidetes, Firmicutes, and Bifidobacterial, as well as increased SCFA production in all age groups. SCF tended to have the greatest effect on propionate production. These findings demonstrate the prebiotic potential of SCF in babies, adults, and the elderly and provide insight into the mechanisms behind the observed prebiotic effects.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Humanos , Prebióticos/análisis , Zea mays , Lipopolisacáridos/farmacología , Células CACO-2 , Ácidos Grasos Volátiles/metabolismo
2.
Int J Pharm ; 607: 120977, 2021 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-34384885

RESUMEN

Oral administration of active pharmaceutical ingredients, nutraceuticals, enzymes or probiotics requires an appropriate delivery system for optimal bioactivity and absorption. The harsh conditions during the gastrointestinal transit can degrade the administered products, hampering their efficacy. Enteric or delayed-release pharmaceutical formulations may help overcome these issues. In a Simulator of Human Intestinal Microbial Ecosystem model (SHIME) and using caffeine as a marker for release kinetics and L. acidophilus survivability as an indicator for protection, we compared the performance of ten capsule configurations, single or DUOCAP® combinations. The function of L. acidophilus and its impact on the gut microbiota was further tested in three selected capsule types, combinations of DRcaps® capsule in DRcaps® capsule (DR-in-DR) and DRcaps® capsule in Vcaps® capsule (DR-in-VC) and single Vcaps® Plus capsule under colonic conditions. We found that under stomach and small intestine conditions, DR-in-DR and DR-in-VC led to the best performance both under fed and fasted conditions based on the slow caffeine release and the highest L. acidophilus survivability. The Vcaps® Plus capsule however, led to the quickest caffeine and probiotic release. When DR-in-DR, DR-in-VC and single Vcaps® Plus capsules were tested through the whole gastrointestinal tract, including under colonic conditions, caffeine release was found to be slower in capsules containing DRcaps® capsules compared to the single Vcaps® capsules. In addition, colonic survival of L. acidophilus was significantly increased under fasted conditions in DR-in-DR or DR-in-VC formulation compared to Vcaps® Plus capsule. To assess the impact of these formulations on the microbial function, acetate, butyrate and propionate as well as ammonia were measured. L. acidophilus released from DR-in-DR or DR-in-VC induced a significant increase in butyrate and a decrease in ammonia, suggesting a proliferation of butyrate-producing bacteria and reduction in ammonia-producing bacteria. These data suggest that L. acidophilus included in DR-in-DR or DR-in-VC reaching the colon is viable and functional, potentially contributing to changes in colonic microbiota composition and diversity.


Asunto(s)
Cafeína , Polímeros , Cápsulas , Química Farmacéutica , Ecosistema , Humanos
3.
Nutrients ; 13(4)2021 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-33805552

RESUMEN

Human gut microbiota (HGM) play a significant role in health and disease. Dietary components, including fiber, fat, proteins and micronutrients, can modulate HGM. Much research has been performed on conventional prebiotics such as fructooligosaccharides (FOS) and galactooligosaccharides (GOS), however, novel prebiotics or micronutrients still require further validation. We assessed the effect of FOS, xylooligosaccharides (XOS) and a mixture of an antioxidant vitamin blend (AOB) on gut microbiota composition and activity, and intestinal barrier in vitro. We used batch fermentations and tested the short-term effect of different products on microbial activity in six donors. Next, fecal inocula from two donors were used to inoculate the simulator of the human microbial ecosystem (SHIME) and after long-term exposure of FOS, XOS and AOB, microbial activity (short- and branched-chain fatty acids and lactate) and HGM composition were evaluated. Finally, in vitro assessment of intestinal barrier was performed in a Transwell setup of differentiated Caco-2 and HT29-MTX-E12 cells exposed to fermentation supernatants. Despite some donor-dependent differences, all three tested products showed beneficial modulatory effects on microbial activity represented by an increase in lactate and SCFA levels (acetate, butyrate and to a lesser extent also propionate), while decreasing proteolytic markers. Bifidogenic effect of XOS was consistent, while AOB supplementation appears to exert a specific impact on reducing F. nucleatum and increasing butyrate-producing B. wexlerae. Functional and compositional microbial changes were translated to an in vitro host response by increases of the intestinal barrier integrity by all the products and a decrease of the redox potential by AOB supplementation.


Asunto(s)
Antioxidantes/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Glucuronatos/farmacología , Oligosacáridos/farmacología , Prebióticos , Vitaminas/farmacología , Adulto , Bacterias/clasificación , Bacterias/efectos de los fármacos , Células CACO-2 , Heces/microbiología , Femenino , Células HT29 , Humanos , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/microbiología , Masculino , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...