Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
PLoS Negl Trop Dis ; 18(2): e0011985, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38377123

RESUMEN

Strategies to detect Human African Trypanosomiasis (HAT) cases rely on serological screening of populations exposed to trypanosomes. In Guinea, mass medical screening surveys performed with the Card Agglutination Test for Trypanosomiasis have been progressively replaced by door-to-door approaches using Rapid Diagnostic Tests (RDTs) since 2016. However, RDTs availability represents a major concern and medical teams must often adapt, even in the absence of prior RDT performance evaluation. For the last 5 years, the Guinean HAT National Control Program had to combine three different RDTs according to their availability and price: the SD Bioline HAT (not available anymore), the HAT Sero-K-SeT (most expensive), and recently the Abbott Bioline HAT 2.0 (limited field evaluation). Here, we assess the performance of these RDTs, alone or in different combinations, through the analysis of both prospective and retrospective data. A parallel assessment showed a higher positivity rate of Abbott Bioline HAT 2.0 (6.0%, n = 2,250) as compared to HAT Sero-K-SeT (1.9%), with a combined positive predictive value (PPV) of 20.0%. However, an evaluation of Abbott Bioline HAT 2.0 alone revealed a low PPV of 3.9% (n = 6,930) which was surpassed when using Abbott Bioline HAT 2.0 in first line and HAT Sero-K-SeT as a secondary test before confirmation, with a combined PPV reaching 44.4%. A retrospective evaluation of all 3 RDTs was then conducted on 189 plasma samples from the HAT-NCP biobank, confirming the higher sensitivity (94.0% [85.6-97.7%]) and lower specificity (83.6% [76.0-89.1%]) of Abbott Bioline HAT 2.0 as compared to SD Bioline HAT (Se 64.2% [52.2-74.6%]-Sp 98.4% [94.2-99.5%]) and HAT Sero-K-SeT (Se 88.1% [78.2-93.8%]-Sp 98.4% [94.2-99.5%]). A comparison of Abbott Bioline HAT 2.0 and malaria-RDT positivity rates on 479 subjects living in HAT-free malaria-endemic areas further revealed that a significantly higher proportion of subjects positive in Abbott Bioline HAT 2.0 were also positive in malaria-RDT, suggesting a possible cross-reaction of Abbott Bioline HAT 2.0 with malaria-related biological factors in about 10% of malaria cases. This would explain, at least in part, the limited specificity of Abbott Bioline HAT 2.0. Overall, Abbott Bioline HAT 2.0 seems suitable as first line RDT in combination with a second HAT RDT to prevent confirmatory lab overload and loss of suspects during referral for confirmation. A state-of-the-art prospective comparative study is further required for comparing all current and future HAT RDTs to propose an optimal combination of RDTs for door-to-door active screening.


Asunto(s)
Malaria , Tripanosomiasis Africana , Humanos , Animales , Tripanosomiasis Africana/diagnóstico , Papúa Nueva Guinea , Estudios Prospectivos , Estudios Retrospectivos
2.
PLoS Pathog ; 19(12): e1011220, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38127941

RESUMEN

In the mammalian host, the biology of tissue-dwelling Trypanosoma brucei parasites is not completely understood, especially the mechanisms involved in their extravascular colonization. The trypanosome flagellum is an essential organelle in multiple aspects of the parasites' development. The flagellar protein termed FLAgellar Member 8 (FLAM8) acts as a docking platform for a pool of cyclic AMP response protein 3 (CARP3) that is involved in signaling. FLAM8 exhibits a stage-specific distribution suggesting specific functions in the mammalian and vector stages of the parasite. Analyses of knockdown and knockout trypanosomes in their mammalian forms demonstrated that FLAM8 is not essential in vitro for survival, growth, motility and stumpy differentiation. Functional investigations in experimental infections showed that FLAM8-deprived trypanosomes can establish and maintain an infection in the blood circulation and differentiate into insect transmissible forms. However, quantitative bioluminescence imaging and gene expression analysis revealed that FLAM8-null parasites exhibit a significantly impaired dissemination in the extravascular compartment, that is restored by the addition of a single rescue copy of FLAM8. In vitro trans-endothelial migration assays revealed significant defects in trypanosomes lacking FLAM8. FLAM8 is the first flagellar component shown to modulate T. brucei distribution in the host tissues, possibly through sensing functions, contributing to the maintenance of extravascular parasite populations in mammalian anatomical niches, especially in the skin.


Asunto(s)
Trypanosoma brucei brucei , Tripanosomiasis Africana , Animales , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Transducción de Señal , Comunicación Celular , Trypanosoma brucei brucei/metabolismo , Mamíferos , Flagelos/metabolismo , Tripanosomiasis Africana/parasitología
3.
PLoS Negl Trop Dis ; 17(7): e0011528, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37498955

RESUMEN

Although studies on African Trypanosomiases revealed a variety of trypanosome species in the blood of various animal taxa, animal reservoirs of Trypanosoma brucei gambiense and anatomical niches such as skin have been overlooked in most epidemiological settings. This study aims to update epidemiological data on trypanosome infections in animals from human African trypanosomiasis (HAT) foci of Cameroon. Blood and skin snips were collected from 291 domestic and wild animals. DNA was extracted from blood and skin snips and molecular approaches were used to identify different trypanosomes species. Immunohistochemical analyses were used to confirm trypanosome infections in skin snips. PCR revealed 137 animals (47.1%) with at least one trypanosome species in the blood and/or in the skin. Of these 137 animals, 90 (65.7%) and 32 (23.4%) had trypanosome infections respectively in the blood and skin. Fifteen (10.9%) animals had trypanosome infections in both blood and skin snip. Animals from the Campo HAT focus (55.0%) were significantly (X2 = 17.6; P< 0.0001) more infected than those (29.7%) from Bipindi. Trypanosomes of the subgenus Trypanozoon were present in 27.8% of animals while T. vivax, T. congolense forest type and savannah type were detected in 16.5%, 10.3% and 1.4% of animals respectively. Trypanosoma b. gambiense infections were detected in the blood of 7.6% (22/291) of animals. No T. b. gambiense infection was detected in skin. This study highlights the presence of several trypanosome species in the blood and skin of various wild and domestic animals. Skin appeared as an anatomical reservoir for trypanosomes in animals. Despite methodological limitations, pigs, sheep, goats and wild animals were confirmed as potential reservoirs of T. b. gambiense. These animal reservoirs must be considered for the designing of control strategies that will lead to sustainable elimination of HAT.


Asunto(s)
Trypanosoma , Tripanosomiasis Africana , Moscas Tse-Tse , Humanos , Animales , Porcinos , Ovinos , Tripanosomiasis Africana/epidemiología , Tripanosomiasis Africana/veterinaria , Camerún/epidemiología , Prevalencia , ADN Protozoario/genética , ADN Protozoario/química , Trypanosoma/genética , Trypanosoma brucei gambiense/genética , Animales Salvajes , Cabras , Moscas Tse-Tse/genética
4.
EBioMedicine ; 85: 104308, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36374773

RESUMEN

BACKGROUND: To achieve elimination of Human African Trypanosomiasis (HAT) caused by Trypanosoma brucei gambiense (gHAT), the development of highly sensitive diagnostics is needed. We have developed a CRISPR based diagnostic for HAT using SHERLOCK (Specific High-sensitivity Enzymatic Reporter unLOCKing) that is readily adaptable to a field-based setting. METHODS: We adapted SHERLOCK for the detection of T. brucei species. We targeted 7SLRNA, TgSGP and SRA genes and tested SHERLOCK against RNA from blood, buffy coat, dried blood spots (DBS), and clinical samples. FINDINGS: The pan-Trypanozoon 7SLRNA and T. b. gambiense-specific TgSGP SHERLOCK assays had a sensitivity of 0.1 parasite/µL and a limit of detection 100 molecules/µL. T. b. rhodesiense-specific SRA had a sensitivity of 0.1 parasite/µL and a limit of detection of 10 molecules/µL. TgSGP SHERLOCK and SRA SHERLOCK detected 100% of the field isolated strains. Using clinical specimens from the WHO HAT cryobank, the 7SLRNA SHERLOCK detected trypanosomes in gHAT samples with 56.1%, 95% CI [46.25-65.53] sensitivity and 98.4%, 95% CI [91.41-99.92] specificity, and rHAT samples with 100%, 95% CI [83.18-100] sensitivity and 94.1%, 95% CI [80.91-98.95] specificity. The species-specific TgSGP and SRA SHERLOCK discriminated between the gambiense/rhodesiense HAT infections with 100% accuracy. INTERPRETATION: The 7SLRNA, TgSGP and SRA SHERLOCK discriminate between gHAT and rHAT infections, and could be used for epidemiological surveillance and diagnosis of HAT in the field after further technical development. FUNDING: Institut Pasteur (PTR-175 SHERLOCK4HAT), French Government's Investissement d'Avenir program Laboratoire d'Excellence Integrative Biology of Emerging Infectious Diseases (LabEx IBEID), and Agence Nationale pour la Recherche (ANR-PRC 2021 SherPa).


Asunto(s)
Tripanosomiasis Africana , Humanos , Animales , Tripanosomiasis Africana/diagnóstico , Trypanosoma brucei gambiense/genética
5.
Nat Commun ; 13(1): 5445, 2022 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-36114198

RESUMEN

Signaling from ciliary microdomains controls developmental processes in metazoans. Trypanosome transmission requires development and migration in the tsetse vector alimentary tract. Flagellar cAMP signaling has been linked to parasite social motility (SoMo) in vitro, yet uncovering control of directed migration in fly organs is challenging. Here we show that the composition of an adenylate cyclase (AC) complex in the flagellar tip microdomain is essential for tsetse salivary gland (SG) colonization and SoMo. Cyclic AMP response protein 3 (CARP3) binds and regulates multiple AC isoforms. CARP3 tip localization depends on the cytoskeletal protein FLAM8. Re-localization of CARP3 away from the tip microdomain is sufficient to abolish SoMo and fly SG colonization. Since intrinsic development is normal in carp3 and flam8 knock-out parasites, AC complex-mediated tip signaling specifically controls parasite migration and thereby transmission. Participation of several developmentally regulated receptor-type AC isoforms may indicate the complexity of the in vivo signals perceived.


Asunto(s)
Trypanosoma brucei brucei , Trypanosoma , Moscas Tse-Tse , Adenilil Ciclasas/metabolismo , Animales , AMP Cíclico , Trypanosoma brucei brucei/metabolismo , Moscas Tse-Tse/parasitología
7.
Front Cell Dev Biol ; 10: 851475, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35450294

RESUMEN

The Trypanosoma (T) brucei life cycle alternates between the tsetse fly vector and the mammalian host. In the insect, T. brucei undergoes several developmental stages until it reaches the salivary gland and differentiates into the metacyclic form, which is capable of infecting the next mammalian host. Mammalian infectivity is dependent on expression of the metacyclic variant surface glycoprotein genes as the cells develop into mature metacyclics. The VEX complex is essential for monoallelic variant surface glycoprotein expression in T. brucei bloodstream form, however, initiation of expression of the surface proteins genes during metacyclic differentiation is poorly understood. To better understand the transition to mature metacyclics and the control of metacyclic variant surface glycoprotein expression we examined the role of VEX1 in this process. We show that modulating VEX1 expression leads to a dysregulation of variant surface glycoprotein expression during metacyclogenesis, and that following both in vivo and in vitro metacyclic differentiation VEX1 relocalises from multiple nuclear foci in procyclic cells to one to two distinct nuclear foci in metacyclic cells - a pattern like the one seen in mammalian infective bloodstream forms. Our data suggest a role for VEX1 in the metacyclic differentiation process and their capacity to become infectious to the mammalian host.

8.
mBio ; 13(1): e0235721, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35012336

RESUMEN

The single-celled parasite Trypanosoma brucei is transmitted by hematophagous tsetse flies. Life cycle progression from mammalian bloodstream form to tsetse midgut form and, subsequently, infective salivary gland form depends on complex developmental steps and migration within different fly tissues. As the parasite colonizes the glucose-poor insect midgut, ATP production is thought to depend on activation of mitochondrial amino acid catabolism via oxidative phosphorylation (OXPHOS). This process involves respiratory chain complexes and F1Fo-ATP synthase and requires protein subunits of these complexes that are encoded in the parasite's mitochondrial DNA (kDNA). Here, we show that progressive loss of kDNA-encoded functions correlates with a decreasing ability to initiate and complete development in the tsetse. First, parasites with a mutated F1Fo-ATP synthase with reduced capacity for OXPHOS can initiate differentiation from bloodstream to insect form, but they are unable to proliferate in vitro. Unexpectedly, these cells can still colonize the tsetse midgut. However, these parasites exhibit a motility defect and are severely impaired in colonizing or migrating to subsequent tsetse tissues. Second, parasites with a fully disrupted F1Fo-ATP synthase complex that is completely unable to produce ATP by OXPHOS can still differentiate to the first insect stage in vitro but die within a few days and cannot establish a midgut infection in vivo. Third, parasites lacking kDNA entirely can initiate differentiation but die soon after. Together, these scenarios suggest that efficient ATP production via OXPHOS is not essential for initial colonization of the tsetse vector but is required to power trypanosome migration within the fly. IMPORTANCE African trypanosomes cause disease in humans and their livestock and are transmitted by tsetse flies. The insect ingests these parasites with its blood meal, but to be transmitted to another mammal, the trypanosome must undergo complex development within the tsetse fly and migrate from the insect's gut to its salivary glands. Crucially, the parasite must switch from a sugar-based diet while in the mammal to a diet based primarily on amino acids when it develops in the insect. Here, we show that efficient energy production by an organelle called the mitochondrion is critical for the trypanosome's ability to swim and to migrate through the tsetse fly. Surprisingly, trypanosomes with impaired mitochondrial energy production are only mildly compromised in their ability to colonize the tsetse fly midgut. Our study adds a new perspective to the emerging view that infection of tsetse flies by trypanosomes is more complex than previously thought.


Asunto(s)
Parásitos , Trypanosoma brucei brucei , Trypanosoma , Tripanosomiasis Africana , Moscas Tse-Tse , Animales , Humanos , Trypanosoma brucei brucei/genética , Moscas Tse-Tse/parasitología , Parásitos/genética , ADN de Cinetoplasto/metabolismo , Fosforilación Oxidativa , Tripanosomiasis Africana/parasitología , Trypanosoma/metabolismo , Mamíferos/metabolismo
9.
PLoS Pathog ; 17(9): e1009904, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34543350

RESUMEN

The long and complex Trypanosoma brucei development in the tsetse fly vector culminates when parasites gain mammalian infectivity in the salivary glands. A key step in this process is the establishment of monoallelic variant surface glycoprotein (VSG) expression and the formation of the VSG coat. The establishment of VSG monoallelic expression is complex and poorly understood, due to the multiple parasite stages present in the salivary glands. Therefore, we sought to further our understanding of this phenomenon by performing single-cell RNA-sequencing (scRNA-seq) on these trypanosome populations. We were able to capture the developmental program of trypanosomes in the salivary glands, identifying populations of epimastigote, gamete, pre-metacyclic and metacyclic cells. Our results show that parasite metabolism is dramatically remodeled during development in the salivary glands, with a shift in transcript abundance from tricarboxylic acid metabolism to glycolytic metabolism. Analysis of VSG gene expression in pre-metacyclic and metacyclic cells revealed a dynamic VSG gene activation program. Strikingly, we found that pre-metacyclic cells contain transcripts from multiple VSG genes, which resolves to singular VSG gene expression in mature metacyclic cells. Single molecule RNA fluorescence in situ hybridisation (smRNA-FISH) of VSG gene expression following in vitro metacyclogenesis confirmed this finding. Our data demonstrate that multiple VSG genes are transcribed before a single gene is chosen. We propose a transcriptional race model governs the initiation of monoallelic expression.


Asunto(s)
Regulación de la Expresión Génica/genética , Trypanosoma brucei brucei/genética , Moscas Tse-Tse/parasitología , Glicoproteínas Variantes de Superficie de Trypanosoma/genética , Animales , Insectos Vectores/parasitología , RNA-Seq , Glándulas Salivales/parasitología
10.
PLoS Biol ; 19(8): e3001359, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34388147

RESUMEN

Microorganisms must make the right choice for nutrient consumption to adapt to their changing environment. As a consequence, bacteria and yeasts have developed regulatory mechanisms involving nutrient sensing and signaling, known as "catabolite repression," allowing redirection of cell metabolism to maximize the consumption of an energy-efficient carbon source. Here, we report a new mechanism named "metabolic contest" for regulating the use of carbon sources without nutrient sensing and signaling. Trypanosoma brucei is a unicellular eukaryote transmitted by tsetse flies and causing human African trypanosomiasis, or sleeping sickness. We showed that, in contrast to most microorganisms, the insect stages of this parasite developed a preference for glycerol over glucose, with glucose consumption beginning after the depletion of glycerol present in the medium. This "metabolic contest" depends on the combination of 3 conditions: (i) the sequestration of both metabolic pathways in the same subcellular compartment, here in the peroxisomal-related organelles named glycosomes; (ii) the competition for the same substrate, here ATP, with the first enzymatic step of the glycerol and glucose metabolic pathways both being ATP-dependent (glycerol kinase and hexokinase, respectively); and (iii) an unbalanced activity between the competing enzymes, here the glycerol kinase activity being approximately 80-fold higher than the hexokinase activity. As predicted by our model, an approximately 50-fold down-regulation of the GK expression abolished the preference for glycerol over glucose, with glucose and glycerol being metabolized concomitantly. In theory, a metabolic contest could be found in any organism provided that the 3 conditions listed above are met.


Asunto(s)
Glicerol Quinasa/metabolismo , Glicerol/metabolismo , Hexoquinasa/metabolismo , Microcuerpos/enzimología , Trypanosoma brucei brucei/metabolismo , Adenosina Trifosfato/metabolismo , Línea Celular
11.
Cell Microbiol ; 23(9): e13347, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33896083

RESUMEN

The single flagellum of African trypanosomes is essential in multiple aspects of the parasites' development. The FLAgellar Member 8 protein (FLAM8), localised to the tip of the flagellum in cultured insect forms of Trypanosoma brucei, was identified as a marker of the locking event that controls flagellum length. Here, we investigated whether FLAM8 could also reflect the flagellum maturation state in other parasite cycle stages. We observed that FLAM8 distribution extended along the entire flagellar cytoskeleton in mammalian-infective forms. Then, a rapid FLAM8 concentration to the distal tip occurs during differentiation into early insect forms, illustrating the remodelling of an existing flagellum. In the tsetse cardia, FLAM8 further localises to the entire length of the new flagellum during an asymmetric division. Strikingly, in parasites dividing in the tsetse midgut and in the salivary glands, the amount and distribution of FLAM8 in the new flagellum were seen to predict the daughter cell fate. We propose and discuss how FLAM8 could be considered a meta-marker of the flagellum stage and maturation state in trypanosomes.


Asunto(s)
Trypanosoma brucei brucei , Trypanosoma , Moscas Tse-Tse , Animales , Diferenciación Celular , Flagelos , Estadios del Ciclo de Vida , Proteínas Protozoarias
12.
PLoS Negl Trop Dis ; 15(3): e0009246, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33661894

RESUMEN

One health (OH) approaches have increasingly been used in the last decade in the fight against zoonotic neglected tropical diseases (NTDs). However, descriptions of such collaborations between the human, animal and environmental health sectors are still limited for French-speaking tropical countries. The objective of the current survey was to explore the diversity of OH experiences applied to research, surveillance and control of NTDs by scientists from French-speaking countries, and discuss their constraints and benefits. Six zoonotic NTDs were targeted: echinococcoses, trypanosomiases, leishmaniases, rabies, Taenia solium cysticercosis and leptospiroses. Invitations to fill in an online questionnaire were sent to members of francophone networks on NTDs and other tropical diseases. Results from the questionnaire were discussed during an international workshop in October 2019. The vast majority (98%) of the 171 respondents considered OH approaches relevant although only 64% had implemented them. Among respondents with OH experience, 58% had encountered difficulties mainly related to a lack of knowledge, interest and support for OH approaches by funding agencies, policy-makers, communities and researchers. Silos between disciplines and health sectors were still strong at both scientific and operational levels. Benefits were reported by 94% of respondents with OH experience, including increased intellectual stimulation, stronger collaborations, higher impact and cost-efficiency of interventions. Recommendations for OH uptake included advocacy, capacity-building, dedicated funding, and higher communities' involvement. Improved research coordination by NTD networks, production of combined human-animal health NTD impact indicators, and transversal research projects on diagnostic and reservoirs were also considered essential.


Asunto(s)
Enfermedades Desatendidas/prevención & control , Medicina Tropical , Zoonosis/prevención & control , Animales , Investigación Biomédica , Humanos , Encuestas y Cuestionarios
13.
Clin Infect Dis ; 73(1): 12-20, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32638003

RESUMEN

BACKGROUND: The diagnosis of gambiense human African trypanosomiasis (gHAT) typically involves 2 steps: a serological screen, followed by the detection of living trypanosome parasites in the blood or lymph node aspirate. Live parasites can, however, remain undetected in some seropositive individuals, who, we hypothesize, are infected with Trypanosoma brucei gambiense parasites in their extravascular dermis. METHODS: To test this hypothesis, we conducted a prospective observational cohort study in the gHAT focus of Forecariah, Republic of Guinea. Of the 5417 subjects serologically screened for gHAT, 66 were enrolled into our study and underwent a dermatological examination. At enrollment, 11 seronegative, 8 unconfirmed seropositive, and 18 confirmed seropositive individuals had blood samples and skin biopsies taken and examined for trypanosomes by molecular and immunohistological methods. RESULTS: In seropositive individuals, dermatological symptoms were significantly more frequent, relative to seronegative controls. T.b. gambiense parasites were present in the blood of all confirmed cases (n = 18) but not in unconfirmed seropositive individuals (n = 8). However, T. brucei parasites were detected in the extravascular dermis of all unconfirmed seropositive individuals and all confirmed cases. Skin biopsies of all treated cases and most seropositive untreated individuals progressively became negative for trypanosomes 6 and 20 months later. CONCLUSIONS: Our results highlight the skin as a potential reservoir for African trypanosomes, with implications for our understanding of this disease's epidemiology in the context of its planned elimination and underlining the skin as a novel target for gHAT diagnostics.


Asunto(s)
Tripanosomiasis Africana , Animales , Guinea , Humanos , Estudios Prospectivos , Trypanosoma brucei gambiense , Tripanosomiasis Africana/diagnóstico , Tripanosomiasis Africana/epidemiología
14.
J Cell Sci ; 133(18)2020 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-32843573

RESUMEN

Multicellular organisms assemble cilia and flagella of precise lengths differing from one cell to another, yet little is known about the mechanisms governing these differences. Similarly, protists assemble flagella of different lengths according to the stage of their life cycle. Trypanosoma brucei assembles flagella of 3 to 30 µm during its development in the tsetse fly. This provides an opportunity to examine how cells naturally modulate organelle length. Flagella are constructed by addition of new blocks at their distal end via intraflagellar transport (IFT). Immunofluorescence assays, 3D electron microscopy and live-cell imaging revealed that IFT was present in all T. brucei life cycle stages. IFT proteins are concentrated at the base, and IFT trains are located along doublets 3-4 and 7-8 and travel bidirectionally in the flagellum. Quantitative analysis demonstrated that the total amount of flagellar IFT proteins correlates with the length of the flagellum. Surprisingly, the shortest flagellum exhibited a supplementary large amount of dynamic IFT material at its distal end. The contribution of IFT and other factors to the regulation of flagellum length is discussed.


Asunto(s)
Trypanosoma brucei brucei , Moscas Tse-Tse , Animales , Transporte Biológico , Cilios/metabolismo , Flagelos/metabolismo , Transporte de Proteínas
15.
Parasit Vectors ; 13(1): 169, 2020 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-32248844

RESUMEN

BACKGROUND: Trypanosoma brucei exhibits a complex life-cycle alternating between tsetse flies and mammalian hosts. When parasites infect the fly, cells differentiate to adapt to life in various tissues, which is accompanied by drastic morphological and biochemical modifications especially in the proventriculus. This key step represents a bottleneck for salivary gland infection. METHODS: Here, we monitored flagellum assembly in trypanosomes during differentiation from the trypomastigote to the epimastigote stage, i.e. when the nucleus migrates to the posterior end of the cell, by using three-dimensional electron microscopy (focused ion beam scanning electron microscopy, FIB-SEM) and immunofluorescence assays. RESULTS: The combination of light and electron microscopy approaches provided structural and molecular evidence that the new flagellum is assembled while the nucleus migrates towards the posterior region of the body. Two major differences with well-known procyclic cells are reported. First, growth of the new flagellum begins when the associated basal body is found in a posterior position relative to the mature flagellum. Secondly, the new flagellum acquires its own flagellar pocket before rotating on the left side of the anterior-posterior axis. FIB-SEM revealed the presence of a structure connecting the new and mature flagellum and serial sectioning confirmed morphological similarities with the flagella connector of procyclic cells. We discuss the potential function of the flagella connector in trypanosomes from the proventriculus. CONCLUSIONS: These findings show that T. brucei finely modulates its cytoskeletal components to generate highly variable morphologies.


Asunto(s)
Flagelos/fisiología , Trypanosoma brucei brucei/fisiología , Moscas Tse-Tse/parasitología , Animales , Diferenciación Celular , Citoesqueleto/parasitología , Flagelos/genética , Técnica del Anticuerpo Fluorescente , Estadios del Ciclo de Vida , Masculino , Microscopía Electrónica , Proteínas Protozoarias , Trypanosoma brucei brucei/ultraestructura
16.
BMC Res Notes ; 13(1): 127, 2020 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-32131895

RESUMEN

OBJECTIVE: In tropical Africa, trypanosomiasis is present in endemic areas with many other diseases including malaria. Because malaria vectors become more anthropo-zoophilic under the current insecticide pressure, they may be exposed to trypanosome parasites. By collecting mosquitoes in six study sites with distinct malaria infection prevalence and blood sample from cattle, we tried to assess the influence of malaria-trypanosomiasis co-endemicity on the vectorial capacity of Anopheles. RESULTS: Overall, all animal infections were due to Trypanosoma vivax (infection rates from 2.6 to 10.5%) in villages where the lowest Plasmodium prevalence were observed at the beginning of the study. An. gambiae s.l. displayed trophic preferences for human-animal hosts. Over 84 mosquitoes, only one was infected by Plasmodium falciparum (infection rate: 4.5%) in a site that displayed the highest prevalence at the beginning of the study. Thus, Anopheles could be exposed to Trypanosoma when they feed on infected animals. No Plasmodium infection was observed in the Trypanosoma-infected animals sites. This can be due to an interaction between both parasites as observed in mice and highlights the need of further studies considering Trypanosoma/Plasmodium mixed infections to better characterize the role of these infections in the dynamic of malaria transmission and the mechanisms involved.


Asunto(s)
Anopheles/parasitología , Enfermedades de los Bovinos/epidemiología , Malaria Falciparum/epidemiología , Mosquitos Vectores/parasitología , Plasmodium falciparum/fisiología , Trypanosoma vivax/fisiología , Tripanosomiasis Africana/epidemiología , Animales , Bovinos , Enfermedades de los Bovinos/transmisión , Coinfección , Femenino , Humanos , Insecticidas , Malaria Falciparum/transmisión , Ratones , Plasmodium falciparum/aislamiento & purificación , Senegal/epidemiología , Trypanosoma vivax/aislamiento & purificación , Tripanosomiasis Africana/transmisión
17.
PLoS Negl Trop Dis ; 14(2): e0008059, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32032359

RESUMEN

During a blood meal, female Anopheles mosquitoes are potentially exposed to diverse microbes in addition to the malaria parasite, Plasmodium. Human and animal African trypanosomiases are frequently co-endemic with malaria in Africa. It is not known whether exposure of Anopheles to trypanosomes influences their fitness or ability to transmit Plasmodium. Using cell and molecular biology approaches, we found that Trypanosoma brucei brucei parasites survive for at least 48h after infectious blood meal in the midgut of the major malaria vector, Anopheles coluzzii before being cleared. This transient survival of trypanosomes in the midgut is correlated with a dysbiosis, an alteration in the abundance of the enteric bacterial flora in Anopheles coluzzii. Using a developmental biology approach, we found that the presence of live trypanosomes in mosquito midguts also reduces their reproductive fitness, as it impairs the viability of laid eggs by affecting their hatching. Furthermore, we found that Anopheles exposure to trypanosomes enhances their vector competence for Plasmodium, as it increases their infection prevalence. A transcriptomic analysis revealed that expression of only two Anopheles immune genes are modulated during trypanosome exposure and that the increased susceptibility to Plasmodium was microbiome-dependent, while the reproductive fitness cost was dependent only on the presence of live trypanosomes but was microbiome independent. Taken together, these results demonstrate multiple effects upon Anopheles vector competence for Plasmodium caused by eukaryotic microbes interacting with the host and its microbiome, which may in turn have implications for malaria control strategies in co-endemic areas.


Asunto(s)
Anopheles/parasitología , Malaria/parasitología , Plasmodium yoelii/fisiología , Trypanosoma/fisiología , Animales , Coinfección , Interacciones Huésped-Parásitos , Ratones , Reacción en Cadena de la Polimerasa , Reproducción
18.
Cell Microbiol ; 21(5): e13023, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30825872

RESUMEN

Intravital microscopy allows the visualisation of how pathogens interact with host cells and tissues in living animals in real time. This method has enabled key advances in our understanding of host-parasite interactions under physiological conditions. A combination of genetics, microscopy techniques, and image analysis have recently facilitated the understanding of biological phenomena in living animals at cellular and subcellular resolution. In this review, we summarise findings achieved by intravital microscopy of the skin and adipose tissues upon infection with various parasites, and we present a view into possible future applications of this method.


Asunto(s)
Tejido Adiposo/diagnóstico por imagen , Tejido Adiposo/parasitología , Interacciones Huésped-Parásitos , Microscopía Intravital/métodos , Piel/diagnóstico por imagen , Piel/parasitología , Tejido Adiposo/citología , Tejido Adiposo/patología , Animales , Microscopía Intravital/tendencias , Leishmania/metabolismo , Leishmania/patogenicidad , Plasmodium/metabolismo , Plasmodium/patogenicidad , Schistosoma/metabolismo , Schistosoma/patogenicidad , Piel/citología , Piel/patología , Trypanosoma/metabolismo , Trypanosoma/patogenicidad
19.
PLoS Biol ; 17(1): e3000105, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30633739

RESUMEN

Human African trypanosomiasis (HAT), or African sleeping sickness, is a fatal disease found throughout sub-Saharan Africa. The disease is close to elimination in many areas, although it was similarly close to elimination once before and subsequently reemerged, despite seemingly low rates of transmission. Determining how these foci persisted and overcame an apparent transmission paradox is key to finally eliminating HAT. By assessing clinical, laboratory, and mathematical data, we propose that asymptomatic infections contribute to transmission through the presence of an overlooked reservoir of skin-dwelling parasites. Our assessment suggests that a combination of asymptomatic and parasitaemic cases is sufficient to maintain transmission at foci without animal reservoirs, and we argue that the current policy not to treat asymptomatic HAT should be reconsidered.


Asunto(s)
Tripanosomiasis Africana/etiología , Tripanosomiasis Africana/transmisión , África del Sur del Sahara/epidemiología , Animales , Infecciones Asintomáticas , Portador Sano/metabolismo , Humanos , Enfermedades Desatendidas/terapia , Tripanosomiasis Africana/tratamiento farmacológico
20.
PLoS Pathog ; 14(12): e1007502, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30557412

RESUMEN

In the glucose-free environment that is the midgut of the tsetse fly vector, the procyclic form of Trypanosoma brucei primarily uses proline to feed its central carbon and energy metabolism. In these conditions, the parasite needs to produce glucose 6-phosphate (G6P) through gluconeogenesis from metabolism of non-glycolytic carbon source(s). We showed here that two phosphoenolpyruvate-producing enzymes, PEP carboxykinase (PEPCK) and pyruvate phosphate dikinase (PPDK) have a redundant function for the essential gluconeogenesis from proline. Indeed, incorporation of 13C-enriched proline into G6P was abolished in the PEPCK/PPDK null double mutant (Δppdk/Δpepck), but not in the single Δppdk and Δpepck mutant cell lines. The procyclic trypanosome also uses the glycerol conversion pathway to feed gluconeogenesis, since the death of the Δppdk/Δpepck double null mutant in glucose-free conditions is only observed after RNAi-mediated down-regulation of the expression of the glycerol kinase, the first enzyme of the glycerol conversion pathways. Deletion of the gene encoding fructose-1,6-bisphosphatase (Δfbpase), a key gluconeogenic enzyme irreversibly producing fructose 6-phosphate from fructose 1,6-bisphosphate, considerably reduced, but not abolished, incorporation of 13C-enriched proline into G6P. In addition, the Δfbpase cell line is viable in glucose-free conditions, suggesting that an alternative pathway can be used for G6P production in vitro. However, FBPase is essential in vivo, as shown by the incapacity of the Δfbpase null mutant to colonise the fly vector salivary glands, while the parental phenotype is restored in the Δfbpase rescued cell line re-expressing FBPase. The essential role of FBPase for the development of T. brucei in the tsetse was confirmed by taking advantage of an in vitro differentiation assay based on the RNA-binding protein 6 over-expression, in which the procyclic forms differentiate into epimastigote forms but not into mammalian-infective metacyclic parasites. In total, morphology, immunofluorescence and cytometry analyses showed that the differentiation of the epimastigote stages into the metacyclic forms is abolished in the Δfbpase mutant.


Asunto(s)
Gluconeogénesis/fisiología , Trypanosoma brucei brucei/metabolismo , Moscas Tse-Tse/parasitología , Animales , Vectores de Enfermedades , Tripanosomiasis Africana
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...