Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros











Intervalo de año de publicación
1.
Environ Impact Assess Rev ; 85: 106469, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32952252

RESUMEN

In this study, municipal solid waste (MSW) composition in distinct world locations is compared and a case study is assessed. Three waste-to-energy (WtE) techniques are employed within the framework of an industrial partnership. Life cycle assessment (LCA) and a brief social contextualization including the production of renewable energy from the waste generated worldwide were held to attain a holistic view and attract the interest of multiple stakeholders. Incineration depicted a sustainable profile with improved results for global warming potential and terrestrial ecotoxicity potential. Regular gasification revealed the best results for eutrophication, acidification, marine aquatic ecotoxicity and human toxicity potential. Two-stage plasma gasification showed negative values for all impact categories i.e. achieving environmental credits. The estimate of the electricity produced from the waste generated per capita showed a fair coverage of the electrical demand in distinct world areas. To the best of the authors' knowledge, there are no reports connecting the electricity use, the waste production and the renewable energy achieved from WtE for different world regions. Therefore, this study supports the replacement of fossil fuels with renewable alternatives, reducing greenhouse gas emissions while maintaining the comfort and commodities suitable for a comfortable quality of life.

2.
Waste Manag ; 90: 37-45, 2019 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-31088672

RESUMEN

Gasification is an innovative and effective process which reduces the amount of waste produced by society and affords a synthetic gas with diverse applicability. In this plasma gasification study at high temperatures, a previously developed Aspen Plus model was used for municipal solid waste (MSW). The study is focused on the behavior of the equivalence ratio (ER), steam to MSW (S/MSW) ratio and gasification temperature (T), as a function of three gasification agents (air, O2 and steam), assessing the final syngas composition. The model was validated with results from literature. The highest hydrogen yield reached 64% (molar fraction), when steam was used as gasification agent, lower values corresponding to O2 utilization. Instead, a CO-enriched syngas was achieved under O2 atmosphere (58%). Enhanced lower heating value (LHV) was obtained for the syngas produced when ER = 1, under oxygen atmosphere at 1500 °C (13 MJ/Nm3). This is due to the formation of CO, promoted by O2, which constitutes an important factor in enhancing syngas LHV. Tar presence in the gasification process normally implies significant complications, but in this study, no problems were noticed since gasification occurred at higher temperatures.


Asunto(s)
Eliminación de Residuos , Residuos Sólidos , Gases , Hidrógeno , Modelos Teóricos
3.
Waste Manag ; 73: 476-486, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28647223

RESUMEN

The present study shows the experimental and numerical results of thermal gasification of biomass, on the energy potential of agro-industrial waste from the Portalegre region. Gasification tests were performed in a pilot-scale fluidized bed gasifier, in order to study the behavior of peach stones and miscanthus to investigate the effect of gasification temperatures at 750°C, 800°C and 850°C at a constant biomass flow rate of 45kg/h. In order to optimize the operating conditions of the biomass gasification process, a numerical model is developed namely COMMENT code. This model is a computer model of two dimensions describing the biomass gasification processes in a fluidized bed gasifier using peach stone and miscanthus as fuel. Both phases, solid and gaseous, were described using an Eulerian-Eulerian approach exchanging mass, energy, and momentum. The numerical model results are then compared with experimental results. The produced results show the impact of the increased temperature in the calorific value of the syngas. The tests carried out at 750°C shown an increase in CO2 and N2 and a decrease of CO in the range of 5% comparing to the tests carried out at 850°C. In addition, increased temperature favors a decrease in tar production in thermal gasification process. Numerical results shows to be in good agreement with the experimental data.


Asunto(s)
Hidrodinámica , Residuos Industriales , Biomasa , Gases , Temperatura
4.
Comput Methods Biomech Biomed Engin ; 20(8): 822-831, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28367643

RESUMEN

Hemodynamic in abdominal aorta bifurcation was investigated in a real case using computational fluid dynamics. A Newtonian and non-Newtonian (Walburn-Schneck) viscosity models were compared. The geometrical model was obtained by 3D reconstruction from CT-scan and hemodynamic parameters obtained by laser-Doppler. Blood was assumed incompressible fluid, laminar flow in transient regime and rigid vessel wall. Finite volume-based was used to study the velocity, pressure, wall shear stress (WSS) and viscosity throughout cardiac cycle. Results obtained with Walburn-Schneck's model, during systole, present lower viscosity due to shear thinning behavior. Furthermore, there is a significant difference between the results obtained by the two models for a specific patient. During the systole, differences are more pronounced and are preferably located in the tortuous regions of the artery. Throughout the cardiac cycle, the WSS amplitude between the systole and diastole is greater for the Walburn-Schneck's model than for the Newtonian model. However, the average viscosity along the artery is always greater for the non-Newtonian model, except in the systolic peak. The hemodynamic model is crucial to validate results obtained with CFD and to explore clinical potential.


Asunto(s)
Aorta Abdominal/fisiología , Hidrodinámica , Velocidad del Flujo Sanguíneo/fisiología , Viscosidad Sanguínea , Humanos , Modelos Cardiovasculares , Presión , Flujo Sanguíneo Regional/fisiología , Reproducibilidad de los Resultados , Estrés Mecánico , Factores de Tiempo
5.
J Appl Biomech ; 31(1): 48-55, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25222969

RESUMEN

The aim of this research was to numerically clarify the effect of finger spreading and thumb abduction on the hydrodynamic force generated by the hand and forearm during swimming. A computational fluid dynamics (CFD) analysis of a realistic hand and forearm model obtained using a computer tomography scanner was conducted. A mean flow speed of 2 m · s(-1) was used to analyze the possible combinations of three finger positions (grouped, partially spread, totally spread), three thumb positions (adducted, partially abducted, totally abducted), three angles of attack (a = 0°, 45°, 90°), and four sweepback angles (y = 0°, 90°, 180°, 270°) to yield a total of 108 simulated situations. The values of the drag coefficient were observed to increase with the angle of attack for all sweepback angles and finger and thumb positions. For y = 0° and 180°, the model with the thumb adducted and with the little finger spread presented higher drag coefficient values for a = 45° and 90°. Lift coefficient values were observed to be very low at a = 0° and 90° for all of the sweepback angles and finger and thumb positions studied, although very similar values are obtained at a = 45°. For y = 0° and 180°, the effect of finger and thumb positions appears to be much most distinct, indicating that having the thumb slightly abducted and the fingers grouped is a preferable position at y = 180°, whereas at y = 0°, having the thumb adducted and fingers slightly spread yielded higher lift values. Results show that finger and thumb positioning in swimming is a determinant of the propulsive force produced during swimming; indeed, this force is dependent on the direction of the flow over the hand and forearm, which changes across the arm's stroke.


Asunto(s)
Rendimiento Atlético/fisiología , Dedos/fisiología , Natación/fisiología , Adulto , Antebrazo/fisiología , Humanos , Hidrodinámica , Modelos Biológicos , Pulgar/fisiología
6.
Braz. arch. biol. technol ; 57(2): 302-308, Mar.-Apr. 2014. ilus, graf
Artículo en Inglés | LILACS | ID: lil-705753

RESUMEN

The aim of this study was to analyze the effect of depth on the hydrodynamic drag coefficient during the passive underwater gliding after the starts and turns. The swimmer hydrodynamics performance was studied by the application of computational fluid dynamics (CFD) method. The steady-state CFD simulations were performed by the application of k - omega turbulent model and volume of fluid method to obtain two-phase flow around a three-dimensional swimmer model when gliding near water surface and at different depths from the water surface. The simulations were conducted for four different swimming pool size, each with different depth, i.e., 1.0, 1.5, 2.0 and 3.0 m for three different velocities, i.e., 1.5, 2.0 and 2.5 m/s, with swimmer gliding at different depths with intervals of 0.25 m, each starting from the water surface, respectively. The numerical results of pressure drag and total coefficients at individual average race velocities were obtained. The results showed that the drag coefficient decreased as depth increased, with a trend toward reduced fluctuation after 0.5m depth from the water surface. The selection of the appropriate depth during the gliding phase should be a main concern of swimmers and coaches.

7.
Biomed Res Int ; 2013: 140487, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23691493

RESUMEN

The aim of this paper is to determine the hydrodynamic characteristics of swimmer's scanned hand models for various combinations of both the angle of attack and the sweepback angle and shape and velocity of swimmer's hand, simulating separate underwater arm stroke phases of freestyle (front crawl) swimming. Four realistic 3D models of swimmer's hand corresponding to different combinations of separated/closed fingers positions were used to simulate different underwater front crawl phases. The fluid flow was simulated using FLUENT (ANSYS, PA, USA). Drag force and drag coefficient were calculated using (computational fluid dynamics) CFD in steady state. Results showed that the drag force and coefficient varied at the different flow velocities on all shapes of the hand and variation was observed for different hand positions corresponding to different stroke phases. The models of the hand with thumb adducted and abducted generated the highest drag forces and drag coefficients. The current study suggests that the realistic variation of both the orientation angles influenced higher values of drag, lift, and resultant coefficients and forces. To augment resultant force, which affects swimmer's propulsion, the swimmer should concentrate in effectively optimising achievable hand areas during crucial propulsive phases.


Asunto(s)
Simulación por Computador , Mano/anatomía & histología , Mano/fisiología , Hidrodinámica , Natación/fisiología , Fenómenos Biomecánicos/fisiología , Humanos , Modelos Anatómicos , Presión , Reología
8.
Artículo en Inglés | MEDLINE | ID: mdl-22148924

RESUMEN

The aim of this paper is to study the aerodynamics of discus throw. A comparison of numerical and experimental performance of discus throw with and without rotation was carried out using the analysis of lift and drag coefficients. Initial velocity corresponding to variation angle of around 35.5° was simulated. Boundary condition, on the top and bottom boundary edges of computational domain, was imposed in order to eliminate external influences on the discus; a wind resistance was calculated for the velocity values of 25 and 27 m/s. The results indicate that the flight distance (D) was strongly affected by the drag coefficient, the initial velocity, the release angle and the direction of wind velocity. It was observed that these variables change as a function of discus rotation. In this study, results indicate a good agreement of D between experimental values and numerical results.


Asunto(s)
Modelos Biológicos , Atletismo/fisiología , Fenómenos Biomecánicos , Simulación por Computador , Humanos , Hidrodinámica , Movimiento (Física) , Rotación , Viento
9.
J Appl Biomech ; 29(1): 23-32, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22814192

RESUMEN

The distribution of pressure coefficient formed when the fluid contacts with the kayak oar blade is not been studied extensively. The CFD technique was employed to calculate pressure coefficient distribution on the front and rear faces of oar blade resulting from the numerical resolution equations of the flow around the oar blade in the steady flow conditions (4 m/s) for three angular orientations of the oar (45°, 90°, 135°) with main flow. A three-dimensional (3D) geometric model of oar blade was modeled and the k-ε turbulent model was applied to compute the flow around the oar. The main results reported that, under steady state flow conditions, the drag coefficient (Cd = 2.01 for 4 m/s) at 90° orientation has the similar evolution for the different oar blade orientation to the direction of the flow. This is valid when the orientation of the blade is perpendicular to the direction of the flow. Results indicated that the angle of oar strongly influenced the Cd with maximum values for 90° angle of the oar. Moreover, the distribution of the pressure is different for the internal and external edges depending upon oar angle. Finally, the difference of negative pressure coefficient Cp in the rear side and the positive Cp in the front side, contributes toward propulsive force. The results indicate that CFD can be considered an interesting new approach for pressure coefficient calculation on kayak oar blade. The CFD approach could be a useful tool to evaluate the effects of different blade designs on the oar forces and consequently on the boat propulsion contributing toward the design improvement in future oar models. The dependence of variation of pressure coefficient on the angular position of oar with respect to flow direction gives valuable dynamic information, which can be used during training for kayak competition.


Asunto(s)
Diseño Asistido por Computadora , Reología/instrumentación , Reología/métodos , Navíos/instrumentación , Equipo Deportivo , Simulación por Computador , Diseño de Equipo , Análisis de Falla de Equipo , Fricción , Modelos Teóricos , Presión , Resistencia al Corte
10.
J Appl Biomech ; 29(6): 817-23, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24482258

RESUMEN

The aim of the article is to determine the hydrodynamic characteristics of a swimmer's scanned hand model for various possible combinations of both the angle of attack and the sweepback angle, simulating separate underwater arm stroke phases of front crawl swimming. An actual swimmer's hand with thumb adducted was scanned using an Artec L 3D scanner. ANSYS Fluent code was applied for carrying out steady-state computational fluid dynamics (CFD) analysis. The hand model was positioned in nine different positions corresponding to the swimmer's hand orientations (angle of attack and sweepback angle) and velocities observed during the underwater hand stroke of front crawl. Hydrodynamic forces and coefficients were calculated. Results showed significantly higher drag coefficient values in the pull phase, when compared with previous studies under a steady-state flow condition. The mean value of the ratio of drag and lift coefficients was 2.67 ± 2.3 in underwater phases. The mean value of the ratio of drag and lift forces was 2.73 ± 2.4 in underwater phases. Moreover, hydrodynamic coefficients were not almost constant throughout different flow velocities, and variation was observed for different hand positions corresponding to different stroke phases. The current study suggests that the realistic variation of both the orientation angles influenced higher values of drag, lift and resultant coefficients and forces.


Asunto(s)
Transferencia de Energía/fisiología , Mano/fisiología , Modelos Biológicos , Orientación/fisiología , Postura/fisiología , Reología/métodos , Natación/fisiología , Rendimiento Atlético/fisiología , Simulación por Computador , Femenino , Humanos , Adulto Joven
11.
J Appl Biomech ; 29(3): 270-8, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22923427

RESUMEN

The aim of the current study was to analyze the hydrodynamics of three kayaks: 97-kg-class, single-rower, flatwater sports competition, full-scale design evolution models (Nelo K1 Vanquish LI, LII, and LIII) of M.A.R. Kayaks Lda., Portugal, which are among the fastest frontline kayaks. The effect of kayak design transformation on kayak hydrodynamics performance was studied by the application of computational fluid dynamics (CFD). The steady-state CFD simulations where performed by application of the k-omega turbulent model and the volume-of-fluid method to obtain two-phase flow around the kayaks. The numerical result of viscous, pressure drag, and coefficients along with wave drag at individual average race velocities was obtained. At an average velocity of 4.5 m/s, the reduction in drag was 29.4% for the design change from LI to LII and 15.4% for the change from LII to LIII, thus demonstrating and reaffirming a progressive evolution in design. In addition, the knowledge of drag hydrodynamics presented in the current study facilitates the estimation of the paddling effort required from the athlete during progression at different race velocities. This study finds an application during selection and training, where a coach can select the kayak with better hydrodynamics.


Asunto(s)
Simulación por Computador , Hidrodinámica , Navíos , Aceleración , Conducta Competitiva , Diseño de Equipo , Fricción , Humanos , Modelos Teóricos , Presión , Viscosidad
12.
Braz. arch. biol. technol ; 55(6): 851-856, Nov.-Dec. 2012. ilus, tab
Artículo en Inglés | LILACS | ID: lil-660332

RESUMEN

The purpose of this study was to analyse the effect of wearing a swimsuit on swimmer's passive drag. A computational fluid dynamics analysis was carried out to determine the hydrodynamic drag of a female swimmer's model (i) wearing a standard swimsuit; (ii) wearing a last generation swimsuit and; (iii) with no swimsuit, wearing light underwear. The three-dimensional surface geometry of a female swimmer's model with different swimsuit/underwear was acquired through standard commercial laser scanner. Passive drag force and drag coefficient were computed with the swimmer in a prone position. Higher hydrodynamic drag values were determined when the swimmer was with no swimsuit in comparison with the situation when the swimmer was wearing a swimsuit. The last generation swimsuit presented lower hydrodynamic drag values, although very similar to standard swimsuit. In conclusion, wearing a swimsuit could positively influence the swimmer's hydrodynamics, especially reducing the pressure drag component.

13.
J Hum Kinet ; 33: 55-62, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23487502

RESUMEN

The aim of this study was to analyze the effects of depth on drag during the streamlined glide in swimming using Computational Fluid Dynamics. The Computation Fluid Dynamic analysis consisted of using a three-dimensional mesh of cells that simulates the flow around the considered domain. We used the K-epsilon turbulent model implemented in the commercial code Fluent(®) and applied it to the flow around a three-dimensional model of an Olympic swimmer. The swimmer was modeled as if he were gliding underwater in a streamlined prone position, with hands overlapping, head between the extended arms, feet together and plantar flexed. Steady-state computational fluid dynamics analyses were performed using the Fluent(®) code and the drag coefficient and the drag force was calculated for velocities ranging from 1.5 to 2.5 m/s, in increments of 0.50m/s, which represents the velocity range used by club to elite level swimmers during the push-off and glide following a turn. The swimmer model middle line was placed at different water depths between 0 and 1.0 m underwater, in 0.25m increments. Hydrodynamic drag decreased with depth, although after 0.75m values remained almost constant. Water depth seems to have a positive effect on reducing hydrodynamic drag during the gliding. Although increasing depth position could contribute to decrease hydrodynamic drag, this reduction seems to be lower with depth, especially after 0.75 m depth, thus suggesting that possibly performing the underwater gliding more than 0.75 m depth could not be to the benefit of the swimmer.

14.
J Appl Biomech ; 27(1): 74-80, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21451185

RESUMEN

The purpose of this study was to analyze the hydrodynamic characteristics of a realistic model of an elite swimmer hand/forearm using three-dimensional computational fluid dynamics techniques. A three-dimensional domain was designed to simulate the fluid flow around a swimmer hand and forearm model in different orientations (0°, 45°, and 90° for the three axes Ox, Oy and Oz). The hand/forearm model was obtained through computerized tomography scans. Steady-state analyses were performed using the commercial code Fluent. The drag coefficient presented higher values than the lift coefficient for all model orientations. The drag coefficient of the hand/forearm model increased with the angle of attack, with the maximum value of the force coefficient corresponding to an angle of attack of 90°. The drag coefficient obtained the highest value at an orientation of the hand plane in which the model was directly perpendicular to the direction of the flow. An important contribution of the lift coefficient was observed at an angle of attack of 45°, which could have an important role in the overall propulsive force production of the hand and forearm in swimming phases, when the angle of attack is near 45°.


Asunto(s)
Antebrazo/fisiología , Mano/fisiología , Modelos Biológicos , Esfuerzo Físico/fisiología , Reología/métodos , Natación/fisiología , Movimientos del Agua , Simulación por Computador , Fricción/fisiología , Humanos , Masculino , Resistencia al Corte/fisiología , Estrés Mecánico , Viscosidad , Adulto Joven
15.
J Hum Kinet ; 29: 49-57, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23486656

RESUMEN

Nowadays the underwater gliding after the starts and the turns plays a major role in the overall swimming performance. Hence, minimizing hydrodynamic drag during the underwater phases should be a main aim during swimming. Indeed, there are several postures that swimmers can assume during the underwater gliding, although experimental results were not conclusive concerning the best body position to accomplish this aim. Therefore, the purpose of this study was to analyse the effect in hydrodynamic drag forces of using different body positions during gliding through computational fluid dynamics (CFD) methodology. For this purpose, two-dimensional models of the human body in steady flow conditions were studied. Two-dimensional virtual models had been created: (i) a prone position with the arms extended at the front of the body; (ii) a prone position with the arms placed alongside the trunk; (iii) a lateral position with the arms extended at the front and; (iv) a dorsal position with the arms extended at the front. The drag forces were computed between speeds of 1.6 m/s and 2 m/s in a two-dimensional Fluent(®) analysis. The positions with the arms extended at the front presented lower drag values than the position with the arms aside the trunk. The lateral position was the one in which the drag was lower and seems to be the one that should be adopted during the gliding after starts and turns.

16.
J Appl Biomech ; 26(3): 324-31, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20841624

RESUMEN

The purpose of the current study was to assess and to compare the hydrodynamics of the first and second gliding positions of the breaststroke underwater stroke used after starts and turns, considering drag force (D), drag coefficient (CD) and cross-sectional area (S). Twelve national-level swimmers were tested (6 males and 6 females, respectively 18.2±4.0 and 17.3±3.0 years old). Hydrodynamic parameters were assessed through inverse dynamics from the velocity to time curve characteristic of the underwater armstroke of the breaststroke technique. The results allow us to conclude that, for the same gliding velocities (1.37±0.124 m/s), D and the swimmers' S and CD values obtained for the first gliding position are significantly lower than the corresponding values obtained for the second gliding position of the breaststroke underwater stroke (31.67±6.44 N vs. 46.25±7.22 N; 740.42±101.89 cm2 vs. 784.25±99.62 cm2 and 0.458±0.076 vs. 0.664±0.234, respectively). These differences observed for the total sample were not evident for each one of the gender's subgroups.


Asunto(s)
Brazo/fisiología , Rendimiento Atlético/fisiología , Natación/fisiología , Adolescente , Fenómenos Biomecánicos , Femenino , Humanos , Masculino , Grabación de Cinta de Video
17.
Braz. arch. biol. technol ; 53(2): 437-442, Mar.-Apr. 2010. ilus
Artículo en Inglés | LILACS | ID: lil-546576

RESUMEN

The purpose of this study was to develop a three-dimensional digital model of a human hand and forearm to apply Computational Fluid Dynamics to propulsion analysis in swimming. Computer tomography scans of the hand and forearm of an Olympic swimmer were applied. The data were converted, using image processing techniques, into relevant coordinate input, which could be used in Computational Fluid Dynamics software. From that analysis, it was possible to verify an almost perfect agreement between the true human segment and the digital model. This technique could be used as a means to overcome the difficulties in developing a true three-dimensional model of a specific segment of the human body. Additionally, it could be used to improve the use of Computational Fluid Dynamics generally in sports and specifically in swimming studies, decreasing the gap between the experimental and the computational data.


O objetivo do presente estudo foi desenvolver um modelo digital tridimensional de uma mão e um antebraço humano para aplicar a Dinâmica Computacional de Fluidos ao estudo da propulsão em natação. Foram aplicados procedimentos computorizados de tomografia axial na mão e antebraço de um nadador Olímpico. Através de técnicas de processamento de imagem, os dados foram convertidos em coordenadas tridimensionais, que podem ser utilizadas em programas de simulação computacional. Através dos resultados encontrados, foi possível verificar uma semelhança quase perfeita entre o segmento humano e o modelo digital. Esta técnica pode ser utilizada como uma forma de ultrapassar as dificuldades em desenvolver um modelo digital tridimensional de um segmento específico do corpo humano. Complementarmente, pode ser bastante útil na melhoria da utilização da Dinâmica Computacional de Fluidos no Desporto, de uma forma geral, e, mais especificamente, nos estudos em natação, diminuindo a diferença entre a investigação experimental e a investigação computacional.

18.
J Appl Biomech ; 26(1): 87-92, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20147761

RESUMEN

The main aim of this study was to investigate the effect of finger spread on the propulsive force production in swimming using computational fluid dynamics. Computer tomography scans of an Olympic swimmer hand were conducted. This procedure involved three models of the hand with differing finger spreads: fingers closed together (no spread), fingers with a small (0.32 cm) spread, and fingers with large (0.64 cm) spread. Steady-state computational fluid dynamics analyses were performed using the Fluent code. The measured forces on the hand models were decomposed into drag and lift coefficients. For hand models, angles of attack of 0 degrees, 15 degrees, 30 degrees, 45 degrees, 60 degrees, 75 degrees, and 90 degrees, with a sweep back angle of 0 degrees, were used for the calculations. The results showed that the model with a small spread between fingers presented higher values of drag coefficient than did the models with fingers closed and fingers with a large spread. One can note that the drag coefficient presented the highest values for an attack angle of 90 degrees in the three hand models. The lift coefficient resembled a sinusoidal curve across the attack angle. The values for the lift coefficient presented few differences among the three models, for a given attack angle. These results suggested that fingers slightly spread could allow the hand to create more propulsive force during swimming.


Asunto(s)
Aceleración , Conducta Competitiva/fisiología , Dedos/fisiología , Reología/métodos , Natación/fisiología , Fenómenos Biomecánicos , Simulación por Computador , Dedos/anatomía & histología , Dedos/diagnóstico por imagen , Mano/anatomía & histología , Mano/diagnóstico por imagen , Mano/fisiología , Humanos , Procesamiento de Imagen Asistido por Computador , Tomografía Computarizada por Rayos X
19.
J Appl Biomech ; 25(3): 253-7, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19827475

RESUMEN

This study used a computational fluid dynamics methodology to analyze the effect of body position on the drag coefficient during submerged gliding in swimming. The k-epsilon turbulent model implemented in the commercial code Fluent and applied to the flow around a three-dimensional model of a male adult swimmer was used. Two common gliding positions were investigated: a ventral position with the arms extended at the front, and a ventral position with the arms placed along side the trunk. The simulations were applied to flow velocities of between 1.6 and 2.0 m x s(-1), which are typical of elite swimmers when gliding underwater at the start and in the turns. The gliding position with the arms extended at the front produced lower drag coefficients than with the arms placed along the trunk. We therefore recommend that swimmers adopt the arms in front position rather than the arms beside the trunk position during the underwater gliding.


Asunto(s)
Natación/fisiología , Fenómenos Biomecánicos , Simulación por Computador , Humanos , Imagenología Tridimensional , Masculino , Modelos Teóricos , Consumo de Oxígeno , Análisis de Regresión , Estadística como Asunto , Movimientos del Agua
20.
J Sports Sci Med ; 8(1): 58-66, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-24150557

RESUMEN

The aim of the present study was to analyze the hydrodynamic characteristics of a true model of a swimmer hand with the thumb in different positions using numerical simulation techniques. A three-dimensional domain was created to simulate the fluid flow around three models of a swimmer hand, with the thumb in different positions: thumb fully abducted, partially abducted, and adducted. These three hand models were obtained through computerized tomography scans of an Olympic swimmer hand. Steady-state computational fluid dynamics analyses were performed using the Fluent(®) code. The forces estimated in each of the three hand models were decomposed into drag and lift coefficients. Angles of attack of hand models of 0°, 45° and 90°, with a sweep back angle of 0° were used for the calculations. The results showed that the position with the thumb adducted presented slightly higher values of drag coefficient compared with thumb abducted positions. Moreover, the position with the thumb fully abducted allowed increasing the lift coefficient of the hand at angles of attack of 0° and 45°. These results suggested that, for hand models in which the lift force can play an important role, the abduction of the thumb may be better, whereas at higher angles of attack, in which the drag force is dominant, the adduction of the thumb may be preferable. Key pointsNumerical simulation techniques can provide answers to problems which have been unobtainable using experimental methods.The computer tomography scans allowed the creation of a complete and true digital anatomic model of a swimmer hand.The position with the thumb adducted presented slightly higher values of drag coefficient than the positions with the thumb abducted.The position with the thumb fully abducted allowed increasing the lift coefficient of the hand at angles of attack of 0 and 45 degrees.For hand positions in which the lift force can play an important role the abduction of the thumb may be better whereas at higher angles of attack, in which the drag force is dominant, the adduction of the thumb may be preferable for swimmers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA