Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Intervalo de año de publicación
1.
Science ; 385(6708): 475, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39088615

RESUMEN

Patients with devastating illnesses demonstrate incredible courage in battling their disease. Innovative cell and gene therapies (CGTs), built on decades of research, are changing the lives of those who suffer from conditions ranging from cancer to sickle cell disease to neurologic diseases. Although hailed for their promise and recognized for benefits that will exceed the costs, the high prices of CGTs ($300 thousand to $4 million per dose) leave these therapies out of reach for many. This accessibility problem will only be solved if academia, industry, investors, funders, regulators, and advocacy groups work together to put CGT breakthroughs in the hands of all who stand to benefit.


Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos , Terapia Genética , Accesibilidad a los Servicios de Salud , Humanos , Anemia de Células Falciformes/terapia , Anemia de Células Falciformes/genética , Tratamiento Basado en Trasplante de Células y Tejidos/economía , Terapia Genética/economía , Neoplasias/terapia , Neoplasias/genética , Análisis Costo-Beneficio
2.
Cell Rep Med ; 5(7): 101628, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38986621

RESUMEN

Chimeric antigen receptor T cells (CART) targeting lymphocyte antigens can induce T cell fratricide and require additional engineering to mitigate self-damage. We demonstrate that the expression of a chimeric antigen receptor (CAR) targeting CD5, a prominent pan-T cell antigen, induces rapid internalization and complete loss of the CD5 protein on T cells, protecting them from self-targeting. Notably, exposure of healthy and malignant T cells to CD5.CART cells induces similar internalization of CD5 on target cells, transiently shielding them from cytotoxicity. However, this protection is short-lived, as sustained activity of CD5.CART cells in patients with T cell malignancies results in full ablation of CD5+ T cells while sparing healthy T cells naturally lacking CD5. These results indicate that continuous downmodulation of the target antigen in CD5.CART cells produces effective fratricide resistance without undermining their on-target cytotoxicity.


Asunto(s)
Antígenos CD5 , Receptores Quiméricos de Antígenos , Antígenos CD5/metabolismo , Humanos , Receptores Quiméricos de Antígenos/metabolismo , Receptores Quiméricos de Antígenos/inmunología , Citotoxicidad Inmunológica , Linfocitos T/inmunología , Linfocitos T/metabolismo , Inmunoterapia Adoptiva/métodos , Animales , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores de Antígenos de Linfocitos T/inmunología
3.
Cytotherapy ; 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38819365

RESUMEN

BACKGROUND AIMS: The success of chimeric antigen receptor (CAR) T-cell therapy in treating B-cell malignancies has led to the evaluation of CAR T-cells targeting a variety of other malignancies. Although the efficacy of CAR T-cells is enhanced when administered post-lymphodepleting chemotherapy, this can trigger bone marrow suppression and sustained cytopenia after CD19.CAR T-cell therapy. Additionally, systemic inflammation associated with CAR T-cell activity may contribute to myelosuppression. Cytopenias, such as neutropenia and thrombocytopenia, elevate the risk of severe infections and bleeding, respectively. However, data on the incidence of prolonged cytopenias after immune effector therapy in the solid tumor context remain limited. OBJECTIVE: We compared the incidence of prolonged cytopenias after immune effector therapy including genetically modified T-cells, virus-specific T-cells (VSTs) and NKT-cells, as well non-gene-modified VSTs for leukemia, lymphoma, and solid tumors (ST) to identify associated risk factors. METHODS: A retrospective analysis was conducted of 112 pediatric and adult patients with relapsed and/or refractory cancers who received lymphodepleting chemotherapy followed by immune effector therapy. Patients treated with 13 distinct immune effector cell therapies through 11 single-center clinical trials and 2 commercial products over a 6-year period were categorized into 3 types of malignancies: leukemia, lymphoma and ST. We obtained baseline patient characteristics and adverse events data for each participant, and tracked neutrophil and platelet counts following lymphodepletion. RESULTS: Of 112 patients, 104 (92.9%) experienced cytopenias and 88 (79%) experienced severe cytopenias. Patients with leukemia experienced significantly longer durations of severe neutropenia (median duration of 14 days) compared with patients with lymphoma (7 days) or ST (11 days) (P = 0.002). Patients with leukemia also had a higher incidence of severe thrombocytopenia (74.1%), compared with lymphoma (46%, P = 0.03) and ST (14.3%, P < 0.0001). Prolonged cytopenias were significantly associated with disease type (63% of patients with leukemia, 44% of patients with lymphoma, and 22.9% of patients with ST, P = 0.006), prior hematopoietic stem cell transplant (HSCT) (66.7% with prior HSCT versus 38.3% without prior HSCT, P = 0.039), and development of immune effector cell-associated neurotoxicity syndrome (ICANS) (75% with ICANS versus 38% without ICANS, P = 0.027). There was no significant association between prolonged cytopenias and cytokine release syndrome. CONCLUSIONS: Immune effector recipients often experience significant cytopenias due to marrow suppression following lymphodepletion regardless of disease, but prolonged severe cytopenias are significantly less common after treatment of patients with lymphoma and solid tumors.

5.
Transplant Cell Ther ; 30(8): 776-787, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38762057

RESUMEN

Genetically modified cell therapies (GMCT), particularly immune effector cells (IEC) such as chimeric receptor antigen (CAR) T cells, have shown promise in curing cancer and rare diseases after a single treatment course. Following close behind CAR T approvals are GMCT based on hematopoietic stem cells, such as products developed for hemoglobinopathies and other disorders. Academically sponsored GMCT products, often developed in academic centers without industry involvement, face challenges in sustaining access after completion of early phase studies when there is no commercial partner invested in completing registration trials for marketing applications. The American Society for Transplantation and Cellular Therapy (ASTCT) formed a task force named ACT To Sustain (Adoptive Cell Therapy to Sustain) to address the "valley of death" of academic GMCT products. This paper presents the task force's findings and considerations regarding financial sustainability of academically sponsored GMCT products in the absence of commercial development. We outline case scenarios illustrating barriers to maintaining access to promising GMCT developed by academic centers. The paper also delves into the current state of GMCT development, commercialization, and reimbursement, citing examples of abandoned products, cost estimates associated with GMCT manufacturing and real-world use of cost recovery. We propose potential solutions to address the financial, regulatory, and logistical challenges associated with sustaining access to academically sponsored GMCT products and to ensure that products with promising results do not languish in a "valley of death" due to financial or implementational barriers. The suggestions include aligning US Food and Drug Administration (FDA) designations with benefit coverage, allowing for cost recovery of certain products as a covered benefit, and engaging with regulators and policy makers to discuss alternative pathways for academic centers to provide access. We stress the importance of sustainable access to GMCT and call for collaborative efforts to develop regulatory pathways that support access to academically sponsored GMCT products.


Asunto(s)
Inmunoterapia Adoptiva , Humanos , Inmunoterapia Adoptiva/economía , Inmunoterapia Adoptiva/legislación & jurisprudencia , Inmunoterapia Adoptiva/métodos , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Tratamiento Basado en Trasplante de Células y Tejidos/ética , Estados Unidos , Accesibilidad a los Servicios de Salud , Receptores Quiméricos de Antígenos , United States Food and Drug Administration
6.
Blood ; 143(13): 1231-1241, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38145560

RESUMEN

ABSTRACT: Despite newer targeted therapies, patients with primary refractory or relapsed (r/r) T-cell lymphoma have a poor prognosis. The development of chimeric antigen receptor (CAR) T-cell platforms to treat T-cell malignancies often requires additional gene modifications to overcome fratricide because of shared T-cell antigens on normal and malignant T cells. We developed a CD5-directed CAR that produces minimal fratricide by downmodulating CD5 protein levels in transduced T cells while retaining strong cytotoxicity against CD5+ malignant cells. In our first-in-human phase 1 study (NCT0308190), second-generation autologous CD5.CAR T cells were manufactured from patients with r/r T-cell malignancies. Here, we report safety and efficacy data from a cohort of patients with mature T-cell lymphoma (TCL). Among the 17 patients with TCL enrolled, CD5 CAR T cells were successfully manufactured for 13 out of 14 attempted lines (93%) and administered to 9 (69%) patients. The overall response rate (complete remission or partial response) was 44%, with complete responses observed in 2 patients. The most common grade 3 or higher adverse events were cytopenias. No grade 3 or higher cytokine release syndrome or neurologic events occurred. Two patients died during the immediate toxicity evaluation period due to rapidly progressive disease. These results demonstrated that CD5.CAR T cells are safe and can induce clinical responses in patients with r/r CD5-expressing TCLs without eliminating endogenous T cells or increasing infectious complications. More patients and longer follow-up are needed for validation. This trial was registered at www.clinicaltrials.gov as #NCT0308190.


Asunto(s)
Inmunoterapia Adoptiva , Linfoma de Células T , Humanos , Inmunoterapia Adoptiva/efectos adversos , Inmunoterapia Adoptiva/métodos , Recurrencia Local de Neoplasia/tratamiento farmacológico , Linfocitos T , Enfermedad Crónica , Linfoma de Células T/tratamiento farmacológico , Antígenos CD19
7.
Bol. méd. Hosp. Infant. Méx ; 73(1): 31-40, Jan.-Feb. 2016. tab, graf
Artículo en Inglés | LILACS | ID: biblio-839011

RESUMEN

Fifty years after the first reports of Epstein-Barr virus (EBV)-associated endemic Burkitt's lymphoma, EBV has emerged as the third most prevalent oncogenic virus worldwide. EBV infection is associated with various malignancies including Hodgkin and non-Hodgkin lymphoma, NK/T-cell lymphoma and nasopharyngeal carcinoma. Despite the highly specific immunologic control in the immunocompetent host, EBV can cause severe complications in the immunocompromised host (namely, post-transplant lymphoproliferative disease). This is particularly a problem in patients with delayed immune reconstitution post-hematopoietic stem cell transplant or solid organ transplant. Despite advances in diagnostic techniques and treatment algorithms allowing earlier identification and treatment of patients at highest risk, mortality rates remain as high as 90% if not treated early. The cornerstones of treatment include reduction in immunosuppression and in vivo B cell depletion with an anti-CD20 monoclonal antibody. However, these treatment modalities are not always feasible due to graft rejection, emergence of graft vs. host disease, and toxicity. Newer treatment modalities include the use of adoptive T cell therapy, which has shown promising results in various EBV-related malignancies. In this article we will review recent advances in risk factors, diagnosis and management of EBV-associated malignancies, particularly post-transplant lymphoproliferative disease. We will also discuss new and innovative treatment options including adoptive T cell therapy as well as management of special situations such as chronic active EBV and EBV-associated hemophagocytic lymphohistiocytosis.


A cincuenta años de los primeros reportes de asociación del linfoma de Burkitt con el virus de Epstein-Barr (VEB), el VEB ha emergido como el tercer virus de tipo oncogénico con mayor prevalencia a escala mundial. La infección por VEB se asocia con diversas neoplasias, incluyendo el linfoma de Hodgkin y el no Hodgkin, linfoma de células T/NK y carcinoma nasofaríngeo. A pesar del control inmunológico altamente específico en el huésped inmunocompetente, el VEB puede ocasionar complicaciones severas en el huésped inmunocomprometido (es decir, la enfermedad linfoproliferativa post-trasplante). Esto es un problema particularmente en pacientes en quienes se retrasa la reconstitución de la inmunidad después de un trasplante de células madre hematopoyéticas o un trasplante de órganos sólidos. A pesar de los avances en las técnicas de diagnóstico y los algoritmos de tratamiento que permiten la identificación temprana y el tratamiento de pacientes de alto riesgo, las tasas mortalidad siguen siendo muy altas (del 90%) si no se recibe tratamiento temprano. La piedra angular del tratamiento incluye la disminución de la inmunosupresión y la depleción de células B in vivo con un anticuerpo monoclonal anti-CD20. Sin embargo, estas modalidades de tratamiento no son siempre posibles debido al rechazo del injerto, la enfermedad de injerto contra huésped y la toxicidad. Nuevas modalidades de tratamiento incluyen el uso de la terapia adoptiva de células T, que ha mostrado resultados promisorios en diversas neoplasias relacionadas con el VEB. En este artículo se revisan los avances más recientes en cuanto a los factores de riesgo, diagnóstico y tratamiento de las neoplasias asociadas con VEB, particularmente la enfermedad linfoproliferativa post-trasplante. También se discuten los tratamientos más recientes e innovadores, que incluyen la terapia adoptiva de células T así como el manejo de situaciones especiales, como la infección crónica activa de VEB y la linfohistiocitosis hemafagocítica asociada con VEB.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA