Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cardiovasc Res ; 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38577741

RESUMEN

AIMS: An intrinsic feature of gene transcription is the formation of DNA superhelices near the transcription bubble, which are resolved upon induction of transient double-stranded breaks (DSBs) by topoisomerases. Unrepaired DSBs are pathogenic as they lead to cell cycle arrest, senescence, inflammation, and organ dysfunction. We posit that DSBs would be more prevalent at the genomic sites that are associated with gene expression. The objectives were to identify and characterize genome-wide DSBs at the nucleotide resolution and determine the association of DSBs with transcription in cardiac myocytes. METHODS AND RESULTS: We identified the genome-wide DSBs in ∼1 million cardiac myocytes per heart in three wild-type and three myocyte-specific LMNA-deficient (Myh6-Cre:LmnaF/F) mice by END-Sequencing. The prevalence of DSBs was 0.8% and 2.2% in the wild-type and Myh6-Cre:LmnaF/F myocytes, respectively. The END-Seq signals were enriched for 8 and 6764 DSBs in the wild-type and Myh6-Cre:LmnaF/F myocytes, respectively (q < 0.05). The DSBs were preferentially localized to the gene regions, transcription initiation sites, cardiac transcription factor motifs, and the G quadruplex forming structures. Because LMNA regulates transcription through the lamin-associated domains (LADs), we defined the LADs in cardiac myocytes by a Cleavage Under Targets & Release Using Nuclease (CUT&RUN) assay (N = 5). On average there were 818 LADs per myocyte. Constitutive LADs (cLADs), defined as LADs that were shared by at least three genomes (N = 2572), comprised about a third of the mouse cardiac myocyte genomes. Transcript levels of the protein-coding genes located at the cLADs (N = 3975) were ∼16-fold lower than those at the non-LAD regions (N = ∼17 778). The prevalence of DSBs was higher in the non-LAD as compared to the cLAD regions. Likewise, DSBs were more common in the loss-of-LAD regions, defined as the genomic regions in the Myh6-Cre:LmnaF/F that were juxtaposed to the LAD regions in the wild-type myocytes. CONCLUSION: To our knowledge, this is the first identification of the DSBs, at the nucleotide resolution in the cardiovascular system. The prevalence of DSBs was higher in the genomic regions associated with transcription. Because transcription is pervasive, DSBs are expected to be common and pathogenic in various states and aging.

2.
Curr Microbiol ; 80(10): 333, 2023 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-37658854

RESUMEN

In Iran, dairy-based fermented foods, like yogurt, cheese, fermented milk, buttermilk, kashk, butter, and Doogh are essential dietary components. Doogh is typically made using fermented yogurt or buttermilk. However, a literature review revealed a lack of research on extracting probiotics from Doogh during processing. As dairy products contain lactic acid bacteria, the aim was to isolate and identify them using culture and PCR-sequencing techniques. Samples of traditional Doogh were collected throughout the Chaharmahal Bakhtiari province of Iran. A specific number of strains have been isolated and among them, the strain LB12 was selected for further characterization based on its probiotic properties. Probiotic properties like adhesion capability, antagonistic activity, resistance to the simulated stomach and intestinal fluids, pH, and bile salt were assessed according to National Standard ISO 19459 of Iran. The LB12 strain was identified as Lacticaseibacillus paracasei by partial 16 rDNA sequence analysis. This L. paracasei strain demonstrated its in vitro resilience to stomach conditions with 58.04% survival at pH 3 and more than 50% resistance to different bile salt concentrations. L. paracasei LB12 showed a cell surface hydrophobicity of 38.18% and a 6.2 log CFU/ml resistance to simulated gastric and intestinal fluids, and a rate of auto- and co-aggregation of 15% and 22%, respectively. L. parasei LB12 showed also a moderate adhesion to HT-29 cell line. In conclusion, L. paracasei LB12 is considered a promising potential probiotic suitable for the development of food supplement and pharmaceutical products.


Asunto(s)
Leche , Probióticos , Animales , Irán , Lacticaseibacillus , Ácidos y Sales Biliares
3.
Cardiovasc Res ; 119(17): 2712-2728, 2023 12 30.
Artículo en Inglés | MEDLINE | ID: mdl-37625794

RESUMEN

AIMS: Mutations in the DSP gene encoding desmoplakin, a constituent of the desmosomes at the intercalated discs (IDs), cause a phenotype that spans arrhythmogenic cardiomyopathy (ACM) and dilated cardiomyopathy. It is typically characterized by biventricular enlargement and dysfunction, myocardial fibrosis, cell death, and arrhythmias. The canonical wingless-related integration (cWNT)/ß-catenin pathway is implicated in the pathogenesis of ACM. The ß-catenin is an indispensable co-transcriptional regulator of the cWNT pathway and a member of the IDs. We genetically inactivated or activated ß-catenin to determine its role in the pathogenesis of desmoplakin cardiomyopathy. METHODS AND RESULTS: The Dsp gene was conditionally deleted in the 2-week-old post-natal cardiac myocytes using tamoxifen-inducible MerCreMer mice (Myh6-McmTam:DspF/F). The cWNT/ß-catenin pathway was markedly dysregulated in the Myh6-McmTam:DspF/F cardiac myocytes, as indicated by a concomitant increase in the expression of cWNT/ß-catenin target genes, isoforms of its key co-effectors, and the inhibitors of the pathway. The ß-catenin was inactivated or activated upon inducible deletion of its transcriptional or degron domain, respectively, in the Myh6-McmTam:DspF/F cardiac myocytes. Genetic inactivation of ß-catenin in the Myh6-McmTam:DspF/F mice prolonged survival, improved cardiac function, reduced cardiac arrhythmias, and attenuated myocardial fibrosis, and cell death caused by apoptosis, necroptosis, and pyroptosis, i.e. PANoptosis. In contrast, activation of ß-catenin had the opposite effects. The deleterious and the salubrious effects were independent of changes in the expression levels of the cWNT target genes and were associated with changes in several molecular and biological pathways, including cell death programmes. CONCLUSION: The cWNT/ß-catenin was markedly dysregulated in the cardiac myocytes in a mouse model of desmoplakin cardiomyopathy. Inactivation of ß-catenin attenuated, whereas its activation aggravated the phenotype, through multiple molecular pathways, independent of the cWNT transcriptional activity. Thus, suppression but not activation of ß-catenin might be beneficial in desmoplakin cardiomyopathy.


Asunto(s)
Displasia Ventricular Derecha Arritmogénica , Cardiomiopatías , Ratones , Animales , Displasia Ventricular Derecha Arritmogénica/genética , Desmoplaquinas/genética , Desmoplaquinas/metabolismo , beta Catenina/genética , beta Catenina/metabolismo , Cardiomiopatías/genética , Arritmias Cardíacas/metabolismo , Fibrosis
4.
Artículo en Inglés | MEDLINE | ID: mdl-37577061

RESUMEN

Introduction: The genome is constantly exposed to numerous stressors, which induce DNA lesions, including double-stranded DNA breaks (DSBs). DSBs are the most dangerous, as they induce genomic instability. In response to DNA damage, the cell activates nuclear DNA damage response (DDR) and the cytosolic DNA sensing protein (CDSP) pathways, the latter upon release of the DSBs to the cytosol. The CDSP pathway activates NFκB and IRF3, which induce the expression of the pro-inflammatory genes. There is scant data on the activation of the CDSP pathway in human hearts with dilated cardiomyopathy (DCM). Aim: We aimed to determine expression levels of selected components of the CDSP pathway in human hearts with DCM. Methods: The DNA strand breaks were detected by the single-cell gel electrophoresis or the comet assay and expression of selected proteins by immunoblotting. Transcript levels were quantified in the RNA-Seq data. Results: Single-cell gel electrophoresis showed an approximately 2-fold increase in the number of COMET cells in the DCM hearts. Immunoblotting showed increased levels of cyclic GMP-AMP synthase (CGAS), the canonical CDSP; TANK-binding kinase 1 (TBK1), an intermediary kinase in the pathway; and RELB, P52, and P50 components of the NFκB pathway in human heart samples from patients with DCM. Likewise, transcript levels of over 2 dozen genes involved in inflammatory responses were increased. Conclusions: The findings provide the first set of evidence for the activation of the CDSP pathway in human hearts with DCM. The data in conjunction with the previous evidence of activation of the DDR pathway implicate the DSBs in the pathogenesis of human DCM.

5.
Biomed Pharmacother ; 164: 114982, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37311278

RESUMEN

BACKGROUND: Triple-negative breast cancer (TNBC) is one of the subtypes of breast cancer (BC) that is associated with poor survival rates and failure to respond to hormonal and targeted therapies. OBJECTIVE: The aim of this study was to identify a specific gene at the expression level for TNBC and targeting of this type of breast cancer based on it. Using TCGA database, genes that are particularly high expression in TNBC subtypes compared to other BC subtypes (in terms of receptor status) and normal samples were identified and their sensitivity and specificity were evaluated. Using PharmacoGX and Drug Bank data, drug sensitivity and drug-appropriate genes were identified, respectively. The effects of the identified drug on triple-negative cell lines (MDA-MB-468) were evaluated in comparison with the cell line of other subtypes (MCF7) by apoptosis and MTS tests. RESULTS: Data analyzes showed that the expression level of KCNG1 gene in the TNBC subgroup was significantly higher compared to other BC subtypes from the KCN gene family and ROC results showed that this gene had highest sensitivity and specificity in TNBC subtype. The results of drug resistance and sensitivity showed that an increase in the expression level of KCNG1 was associated with sensitivity to Cisplatin and Oxaliplatin. Moreover, Drug Bank results showed that Guanidine hydrochloride (GuHCl) was a suitable inhibitor for KCNG1. In vitro results showed that the expression level of KCNG1 was higher in MDA-MB-468 compared to MCF7. In addition, the rate of apoptosis in response to GuHCl treatment in MDA-MB-468 cell line as TNBC cell model was higher than MCF7 in the same concentration. CONCLUSION: This study revealed that GuHCl could be a suitable treatment for TNBC subtype by targeting of KCNG1.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo , Guanidina/farmacología , Guanidina/uso terapéutico , Línea Celular Tumoral , Cisplatino/farmacología , Apoptosis , Proliferación Celular
6.
J Cardiovasc Aging ; 3(1)2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36818425

RESUMEN

Introduction: Arrhythmogenic cardiomyopathy (ACM) is hereditary cardiomyopathy caused by pathogenic variants (mutations) in genes encoding the intercalated disc (ID), particularly desmosome proteins. ACM caused by mutations in the DSP gene encoding desmoplakin (DSP) is characterized by the prominence of cell death, myocardial fibrosis, and inflammation, and is referred to as desmoplakin cardiomyopathy. Aim: The aim of this article was to gain insight into the pathogenesis of DSP cardiomyopathy. Methods and Results: The Dsp gene was exclusively deleted in cardiac myocytes using tamoxifen-inducible MerCreMer (Myh6-Mcm Tam) and floxed Dsp (Dsp F/F) mice (Myh6-Mcm Tam:Dsp F/F). Recombination was induced upon subcutaneous injection of tamoxifen (30 mg/kg/d) for 5 days starting post-natal day 14. Survival was analyzed by Kaplan-Meier plots, cardiac function by echocardiography, arrhythmias by rhythm monitoring, and gene expression by RNA-Seq, immunoblotting, and immunofluorescence techniques. Cell death was analyzed by the TUNEL assay and the expression levels of specific markers were by RT-PCR and immunoblotting. Myocardial fibrosis was assessed by picrosirius red staining of the myocardial sections, RT-PCR, and immunoblotting. The Myh6-Mcm Tam: Dsp F/F mice showed extensive molecular remodeling of the IDs and the differential expression of ~10,000 genes, which predicted activation of KDM5A, IRFs, and NFκB and suppression of PPARGC1A and RB1, among others in the DSP-deficient myocytes. Gene set enrichment analysis predicted activation of the TNFα/NFκB pathway, inflammation, cell death programs, and fibrosis. Analysis of cell death markers indicated PANoptosis, comprised of apoptosis (increased CASP3, CASP8, BAD and reduced BCL2), necroptosis (increased RIPK1, RIPK3, and MLKL), and pyroptosis (increased GSDMD and ASC or PYCARD) in the DSP-deficient myocytes. Transcript levels of the pro-inflammatory and pro-fibrotic genes were increased and myocardial fibrosis comprised ~25% of the myocardium in the DSP-deficient hearts. The Myh6-Mcm Tam:Dsp F/F mice showed severe cardiac systolic dysfunction and ventricular arrhythmias, and died prematurely with a median survival rate of ~2 months. Conclusion: The findings identify PANoptosis as a prominent phenotypic feature of DSP cardiomyopathy and set the stage for delineating the specific molecular mechanisms involved in its pathogenesis. The model also provides the opportunity to test the effects of pharmacological and genetic interventions on myocardial fibrosis and cell death.

7.
J Cardiovasc Aging ; 2(3)2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35891706

RESUMEN

Introduction: Mutations in the LMNA gene, encoding Lamin A/C (LMNA), are established causes of dilated cardiomyopathy (DCM). The phenotype is typically characterized by progressive cardiac conduction defects, arrhythmias, heart failure, and premature death. DCM is primarily considered a disease of cardiac myocytes. However, LMNA is also expressed in other cardiac cell types, including fibroblasts. Aim: The purpose of the study was to determine the contribution of the fibroblasts to DCM caused by LMNA deficiency. Methods and Results: The Lmna gene was deleted by crossing the platelet-derived growth factor receptor α-Cre recombinase (Pdgfra-Cre) and floxed Lmna (Lmna F/F) mice. The LMNA protein was nearly absent in ~80% of the cardiac fibroblasts and ~25% of cardiac myocytes in the Pdgfra-Cre:Lmna F/F mice. The Pdgfra-Cre:Lmna F/F mice showed an early phenotype characterized by cardiac conduction defects, arrhythmias, cardiac dysfunction, myocardial fibrosis, apoptosis, and premature death within the first six weeks of life. The Pdgfra-Cre:Lmna wild type/F (Lmna W/F) mice also showed a similar but slowly evolving phenotype that was expressed within one year of age. RNA sequencing of LMNA-deficient and wild-type cardiac fibroblasts identified differential expression of ~410 genes, which predicted activation of the TP53 and TNFA/NFκB and suppression of the cell cycle pathways. In agreement with these findings, levels of phospho-H2AFX, ATM, phospho-TP53, and CDKN1A, markers of the DNA damage response (DDR) pathway, were increased in the Pdgfra-Cre:Lmna F/F mouse hearts. Moreover, expression of senescence-associated beta-galactosidase was induced and levels of the senescence-associated secretory phenotype (SASP) proteins TGFß1, CTGF (CCN2), and LGLAS3 were increased as well as the transcript levels of additional genes encoding SASP proteins in the Pdgfra-Cre:Lmna F/F mouse hearts. Finally, expression of pH2AFX, a bonafide marker of the double-stranded DNA breaks, was increased in cardiac fibroblasts isolated from the Pdgfra-Cre:Lmna F/F mouse hearts. Conclusion: Deletion of the Lmna gene in fibroblasts partially recapitulates the phenotype of the LMNA-associated DCM, likely through induction of double-stranded DNA breaks, activation of the DDR pathway, and induction of expression of the SASP proteins. The findings indicate that the phenotype in the LMNA-associated DCM is the aggregate consequence of the LMNA deficiency in multiple cardiac cells, including cardiac fibroblasts.

8.
Artículo en Inglés | MEDLINE | ID: mdl-35224561

RESUMEN

INTRODUCTION: Aging is associated with cardiac myocyte loss, sarcopenia, and cardiac dysfunction. Adult cardiac myocytes are postmitotic cells with an insufficient proliferative capacity to compensate for myocyte loss. The canonical WNT (cWNT) pathway is involved in the regulation of cell cycle reentry in various cell types. The effects of the cWNT pathway on the expression of genes involved in cell cycle reentry in the postmitotic cardiac myocytes are unknown. AIM: The aim of the study was to identify genes whose expression is regulated by the ß-catenin, the indispensable component to the cWNT signaling, in the postmitotic myocytes. METHODS AND RESULTS: Cardiac myocyte-specific tamoxifen-inducible MerCreMer (Myh6-Mcm) mice were used to delete the floxed exon 3 or exons 8 to 13 of the Ctnnb1 gene to induce gain-of-function (GoF) or loss-of-function (LoF) the ß-catenin, respectively. Deletion of exon 3 leads to the expression of a stable ß-catenin. In contrast, deletion of exons 8-13 leads to the expression of transcriptionally inactive truncated ß-catenin, which is typically degraded. GoF or LoF of the ß-catenin was verified by reverse transcription-polymerase chain reaction (RT-PCR), immunoblotting, and immunofluorescence. Myocyte transcripts were analyzed by RNA-Sequencing (RNA-Seq) at 4 weeks of age. The GoF of ß-catenin was associated with differential expression of ~1700 genes, whereas its LoF altered expression of ~400 genes. The differentially expressed genes in the GoF myocytes were enriched in pathways regulating the cell cycle, including karyokinesis and cytokinesis, whereas the LoF was associated with increased expression of genes involved in mitochondrial oxidative phosphorylation. These findings were validated by RT-PCR in independent samples. Short-term GoF nor LoF of ß-catenin did not affect the number of cardiac myocytes, cardiac function, myocardial fibrosis, myocardial apoptosis, or adipogenesis at 4 weeks of age. CONCLUSION: Activation of the ß-catenin of the cWNT pathway in postmitotic myocytes leads to cell cycle reentry and expression of genes involved in cytokinesis without leading to an increase in the number of myocytes. In contrast, suppression of the ß-catenin modestly increases the expression of genes involved in oxidative phosphorylation. The findings provide insights into the role of ß-catenin of the cWNT pathway in the regulation of cell cycle reentry and oxidative phosphorylation in the postmitotic cardiac myocytes.

9.
Artículo en Inglés | MEDLINE | ID: mdl-35038970

RESUMEN

The Triple-Negative Breast Cancers (TNBCs) poor survival outcomes are related to not responding to hormonal therapy or targeting HER2 protein. The aim of this study was to introduce a drug among the conventional chemotherapy drugs based on the transcripts of the TNBC patients. The transcriptome of MDA-MB-468 cell line as a TNBC model was analyzed in the presence of 17 common drugs in fifteen GEO datasets. Then, decreased gene lists in the presence of each drug were compared in different subtypes of breast cancer based on TCGA data. The effect of selected drug on survival and apoptosis rates of MDA-MB-468 and MCF-7 cells (as ER+/PR + model) were compared. The outcomes showed that the expression of the decreased gene by Rapamycin among other drugs increased in TNBC subtype compared to the other two subtypes including triple-positive and ER+/PR+. The expression of PSAT1 in TNBC group was significant higher than normal and other subtypes (p ≤ 0.0001), and was introduced as a biomarker in TNBC that its expression was down-regulated by Rapamycin based on in silico studies. In the presence of 3000 µg/mL Rapamycin, there was a sharp decrease in MDA-MB-468 cell viability (p ≤ 0.0001) and a significant increase in apoptosis compared to MCF-7 cells treated with the same concentration of the drug. Moreover, RT-qPCR revealed PSAT1 expression more decreased under Rapamycin-treatment in TNBC cells compared to ER + PR + cells. The results of this study show that Rapamycin is a suitable drug for targeting TNBC based on its transcriptome and biomarker.Supplemental data for this article is available online at.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Apoptosis , Biomarcadores , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Humanos , Sirolimus/farmacología , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética
10.
Artículo en Inglés | MEDLINE | ID: mdl-35079750

RESUMEN

The Cre-LoxP technology, including the tamoxifen (TAM) inducible MerCreMer (MCM), is increasingly used to delineate gene function, understand the disease mechanisms, and test therapeutic interventions. We set to determine the effects of TAM-MCM on cardiac myocyte transcriptome. Expression of the MCM was induced specifically in cardiac myocytes upon injection of TAM to myosin heavy chain 6-MCM (Myh6-Mcm) mice for 5 consecutive days. Cardiac function, myocardial histology, and gene expression (RNA-sequencing) were analyzed 2 weeks after TAM injection. A total of 346 protein coding genes (168 up- and 178 down-regulated) were differentially expressed. Transcript levels of 85 genes, analyzed by a reverse transcription-polymerase chain reaction in independent samples, correlated with changes in the RNA-sequencing data. The differentially expressed genes were modestly enriched for genes involved in the interferon response and the tumor protein 53 (TP53) pathways. The changes in gene expression were relatively small and mostly transient and had no discernible effects on cardiac function, myocardial fibrosis, and apoptosis or induction of double-stranded DNA breaks. Thus, TAM-inducible activation of MCM alters cardiac myocytes gene expression, provoking modest and transient interferon and DNA damage responses without exerting other discernible phenotypic effects. Thus, the effects of TAM-MCM on gene expression should be considered in discerning the bona fide changes that result from the targeting of the gene of interest.

11.
Cardiovasc Res ; 118(6): 1466-1478, 2022 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-34132777

RESUMEN

AIMS: Arrhythmogenic cardiomyopathy (ACM) is a primary myocardial disease that typically manifests with cardiac arrhythmias, progressive heart failure, and sudden cardiac death (SCD). ACM is mainly caused by mutations in genes encoding desmosome proteins. Desmosomes are cell-cell adhesion structures and hubs for mechanosensing and mechanotransduction. The objective was to identify the dysregulated molecular and biological pathways in human ACM in the absence of overt heart failure. METHODS AND RESULTS: Transcriptomes in the right ventricular endomyocardial biopsy samples from three independent individuals carrying truncating mutations in the DSP gene and five control samples were analysed by RNA-Seq (discovery group). These cases presented with cardiac arrhythmias and had a normal right ventricular function. The RNA-Seq analysis identified ∼5000 differentially expressed genes (DEGs), which predicted suppression of the Hippo and canonical WNT pathways, among others. Dysregulated genes and pathways, identified by RNA-Seq, were tested for validation in the right and left ventricular tissues from five independent autopsy-confirmed ACM cases with defined mutations (validation group), who were victims of SCD and had no history of heart failure. Protein levels and nuclear localization of the cWNT and Hippo pathway transcriptional regulators were reduced in the right and left ventricular validation samples. In contrast, levels of acetyltransferase EP300, known to suppress the Hippo and canonical WNT pathways, were increased and its bona fide target TP53 was acetylated. RNA-Seq data identified apical junction, reflective of cell-cell attachment, as the most disrupted biological pathway, which were corroborated by disrupted desmosomes and intermediate filament structures. Moreover, the DEGs also predicted dysregulation of over a dozen canonical signal transduction pathways, including the Tec kinase and integrin signalling pathways. The changes were associated with increased apoptosis and fibro-adipogenesis in the ACM hearts. CONCLUSION: Altered apical junction structures are associated with activation of the EP300-TP53 and suppression of the Hippo/cWNT pathways in human ACM caused by defined mutations in the absence of an overt heart failure. The findings implicate altered mechanotransduction in the pathogenesis of ACM.


Asunto(s)
Displasia Ventricular Derecha Arritmogénica , Cardiomiopatías , Insuficiencia Cardíaca , Arritmias Cardíacas/metabolismo , Cardiomiopatías/metabolismo , Muerte Súbita Cardíaca/etiología , Proteína p300 Asociada a E1A/metabolismo , Insuficiencia Cardíaca/complicaciones , Insuficiencia Cardíaca/genética , Humanos , Mecanotransducción Celular , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Vía de Señalización Wnt
12.
Artículo en Inglés | MEDLINE | ID: mdl-34447973

RESUMEN

INTRODUCTION: Arrhythmogenic cardiomyopathy (ACM) is a genetic disease of the myocardium, characterized by cardiac arrhythmias, dysfunction, and sudden cardiac death. The pathological hallmark of ACM is fibro-adipocytes replacing cardiac myocytes. The canonical WNT pathway is implicated in the pathogenesis of ACM. AIM: The study aimed to determine the effects of the suppression of the WNT pathway on cardiac phenotype in a mouse model of ACM. METHODS AND RESULTS: One copy of the Dsp gene, a known cause of ACM in humans, was deleted specifically in cardiac myocytes (Myh6-Cre-Dsp W/F). Three-month-old wild type and Myh6-Cre-Dsp W/F mice, without a discernible phenotype, were randomized to either untreated or daily administration of a vehicle (placebo), or WNT974, the latter an established inhibitor of the WNT pathway, for three months. The Myh6-Cre-Dsp W/F mice in the untreated or placebo-treated groups exhibited cardiac dilatation and dysfunction, increased myocardial fibrosis, and apoptosis upon completion of the study, which was verified by complementary methods. Daily administration of WNT974 prevented and/or attenuated evolving cardiac dilatation and dysfunction, normalized myocardial fibrosis, and reduced apoptosis, compared to the untreated or placebo-treated groups. However, administration of WNT974 increased the number of adipocytes only in the Myh6-Cre-Dsp W/F hearts. There were no differences in the incidence of cardiac arrhythmias and survival rates. CONCLUSION: Suppression of the WNT pathway imparts salutary phenotypic effects by preventing or attenuating age-dependent expression of cardiac dilatation and dysfunction, myocardial fibrosis, and apoptosis in a mouse model of ACM. The findings set the stage for large-scale studies and studies in larger animal models to test the beneficial effects of the suppression of the WNT pathway in ACM. ONE SENTENCE SUMMARY: Suppression of the WNT signaling pathway has beneficial effects on cardiac dysfunction, myocardial apoptosis, and fibrosis in a mouse model of arrhythmogenic cardiomyopathy.

14.
Circulation ; 143(22): 2169-2187, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33726497

RESUMEN

BACKGROUND: Arrhythmogenic cardiomyopathy (ACM) manifests with sudden death, arrhythmias, heart failure, apoptosis, and myocardial fibro-adipogenesis. The phenotype typically starts at the epicardium and advances transmurally. Mutations in genes encoding desmosome proteins, including DSP (desmoplakin), are major causes of ACM. METHODS: To delineate contributions of the epicardium to the pathogenesis of ACM, the Dsp allele was conditionally deleted in the epicardial cells in mice upon expression of tamoxifen-inducible Cre from the Wt1 locus. Wild type (WT) and Wt1-CreERT2:DspW/F were crossed to Rosa26mT/mG (R26mT/mG) dual reporter mice to tag the epicardial-derived cells with the EGFP (enhanced green fluorescent protein) reporter protein. Tagged epicardial-derived cells from adult Wt1-CreERT2:R26mT/mG and Wt1-CreERT2: R26mT/mG:DspW/F mouse hearts were isolated by fluorescence-activated cell staining and sequenced by single-cell RNA sequencing. RESULTS: WT1 (Wilms tumor 1) expression was progressively restricted postnatally and was exclusive to the epicardium by postnatal day 21. Expression of Dsp was reduced in the epicardial cells but not in cardiac myocytes in the Wt1-CreERT2:DspW/F mice. The Wt1-CreERT2:DspW/F mice exhibited premature death, cardiac dysfunction, arrhythmias, myocardial fibro-adipogenesis, and apoptosis. Single-cell RNA sequencing of ≈18 000 EGFP-tagged epicardial-derived cells identified genotype-independent clusters of endothelial cells, fibroblasts, epithelial cells, and a very small cluster of cardiac myocytes, which were confirmed on coimmunofluorescence staining of the myocardial sections. Differentially expressed genes between the paired clusters in the 2 genotypes predicted activation of the inflammatory and mitotic pathways-including the TGFß1 (transforming growth factor ß1) and fibroblast growth factors-in the epicardial-derived fibroblast and epithelial clusters, but predicted their suppression in the endothelial cell cluster. The findings were corroborated by analysis of gene expression in the pooled RNA-sequencing data, which identified predominant dysregulation of genes involved in epithelial-mesenchymal transition, and dysregulation of 146 genes encoding the secreted proteins (secretome), including genes in the TGFß1 pathway. Activation of the TGFß1 and its colocalization with fibrosis in the Wt1-CreERT2:R26mT/mG:DspW/F mouse heart was validated by complementary methods. CONCLUSIONS: Epicardial-derived cardiac fibroblasts and epithelial cells express paracrine factors, including TGFß1 and fibroblast growth factors, which mediate epithelial-mesenchymal transition, and contribute to the pathogenesis of myocardial fibrosis, apoptosis, arrhythmias, and cardiac dysfunction in a mouse model of ACM. The findings uncover contributions of the epicardial-derived cells to the pathogenesis of ACM.


Asunto(s)
Cardiomiopatías/fisiopatología , Comunicación Paracrina/inmunología , Pericardio/fisiopatología , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos , Animales , Cardiomiopatías/mortalidad , Modelos Animales de Enfermedad , Humanos , Ratones , Análisis de Supervivencia
15.
Cardiovasc Res ; 117(11): 2377-2394, 2021 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-33070193

RESUMEN

AIMS: Arrhythmogenic cardiomyopathy (ACM) encompasses a genetically heterogeneous group of myocardial diseases whose manifestations are sudden cardiac death, cardiac arrhythmias, heart failure, and in a subset fibro-adipogenic infiltration of the myocardium. Mutations in the TMEM43 gene, encoding transmembrane protein 43 (TMEM43) are known to cause ACM. The purpose of the study was to gain insights into the molecular pathogenesis of ACM caused by TMEM43 haploinsufficiency. METHODS AND RESULTS: The Tmem43 gene was specifically deleted in cardiac myocytes by crossing the Myh6-Cre and floxed Tmem43 mice. Myh6-Cre:Tmem43W/F mice showed an age-dependent phenotype characterized by an increased mortality, cardiac dilatation and dysfunction, myocardial fibrosis, adipogenesis, and apoptosis. Sequencing of cardiac myocyte transcripts prior to and after the onset of cardiac phenotype predicted early activation of the TP53 pathway. Increased TP53 activity was associated with increased levels of markers of DNA damage response (DDR), and a subset of senescence-associated secretary phenotype (SASP). Activation of DDR, TP53, SASP, and their selected downstream effectors, including phospho-SMAD2 and phospho-SMAD3 were validated by alternative methods, including immunoblotting. Expression of SASP was associated with epithelial-mesenchymal transition and age-dependent expression of myocardial fibrosis and apoptosis in the Myh6-Cre:Tmem43W/F mice. CONCLUSION: TMEM43 haploinsufficiency is associated with activation of the DDR and the TP53 pathways, which lead to increased expression of SASP and an age-dependent expression of a pro-fibrotic cardiomyopathy. Given that TMEM43 is a nuclear envelope protein and our previous data showing deficiency of another nuclear envelope protein, namely lamin A/C, activates the DDR/TP53 pathway, we surmise that DNA damage is a shared mechanism in the pathogenesis of cardiomyopathies caused by mutations involving nuclear envelope proteins.


Asunto(s)
Cardiomiopatías/metabolismo , Senescencia Celular , Daño del ADN , Reparación del ADN , Haploinsuficiencia , Proteínas de la Membrana/deficiencia , Miocitos Cardíacos/metabolismo , Animales , Apoptosis , Cardiomiopatías/genética , Cardiomiopatías/patología , Modelos Animales de Enfermedad , Fibrosis , Predisposición Genética a la Enfermedad , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Proteínas de la Membrana/genética , Ratones de la Cepa 129 , Ratones Noqueados , Miocitos Cardíacos/patología , Fenotipo , Fosforilación , Fenotipo Secretor Asociado a la Senescencia , Transducción de Señal , Proteína Smad2 , Proteína smad3/metabolismo , Factores de Tiempo , Factor de Crecimiento Transformador beta1/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
16.
J Clin Invest ; 130(9): 4740-4758, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32484798

RESUMEN

Mutation in the LMNA gene, encoding lamin A/C, causes a diverse group of diseases called laminopathies. Cardiac involvement is the major cause of death and manifests as dilated cardiomyopathy, heart failure, arrhythmias, and sudden death. There is no specific therapy for LMNA-associated cardiomyopathy. We report that deletion of Lmna in cardiomyocytes in mice leads to severe cardiac dysfunction, conduction defect, ventricular arrhythmias, fibrosis, apoptosis, and premature death within 4 weeks. The phenotype is similar to LMNA-associated cardiomyopathy in humans. RNA sequencing, performed before the onset of cardiac dysfunction, led to identification of 2338 differentially expressed genes (DEGs) in Lmna-deleted cardiomyocytes. DEGs predicted activation of bromodomain-containing protein 4 (BRD4), a regulator of chromatin-associated proteins and transcription factors, which was confirmed by complementary approaches, including chromatin immunoprecipitation sequencing. Daily injection of JQ1, a specific BET bromodomain inhibitor, partially reversed the DEGs, including those encoding secretome; improved cardiac function; abrogated cardiac arrhythmias, fibrosis, and apoptosis; and prolonged the median survival time 2-fold in the myocyte-specific Lmna-deleted mice. The findings highlight the important role of LMNA in cardiomyocytes and identify BET bromodomain inhibition as a potential therapeutic target in LMNA-associated cardiomyopathy, for which there is no specific effective therapy.


Asunto(s)
Cardiomiopatía Dilatada/metabolismo , Regulación de la Expresión Génica , Lamina Tipo A/deficiencia , Miocitos Cardíacos/metabolismo , Proteínas Nucleares/antagonistas & inhibidores , Proteínas Nucleares/metabolismo , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/metabolismo , Animales , Azepinas/farmacología , Cardiomiopatía Dilatada/tratamiento farmacológico , Cardiomiopatía Dilatada/genética , Cardiomiopatía Dilatada/patología , Lamina Tipo A/metabolismo , Ratones , Ratones Noqueados , Miocitos Cardíacos/patología , Proteínas Nucleares/genética , Factores de Transcripción/genética , Triazoles/farmacología
17.
Jundishapur J Nat Pharm Prod ; 10(1): e17451, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25866714

RESUMEN

BACKGROUND: Cerebral ischemia causes some disorders in behavioral patterns, including memory disorders and pain, which is due to the production of free radicals. Ferulago angulata, known in Iran as chavir, contains some bioactive compounds having antioxidant and free radical-scavenging properties. OBJECTIVES: This study aimed to evaluate the effect of two weeks oral administration of hydroalcoholic extract of F. angulate (100, 200 and 400 mg/kg) on pain as well as active and passive avoidance memories after permanent, bilateral common carotid artery occlusion or cerebral ischemia/hypoperfusion in male adult rats. MATERIALS AND METHODS: In this study, 35 male rats were randomly allocated to test and control groups. To make animal model of permanent cerebral hypoperfusion/ischemia, carotid arteries were ligatured as upper and lower and cut bilaterally. RESULTS: It was found that the administration of 400 mg/kg hydroalcoholic extract of F. angulate for two weeks after brain hypoperfusion ischemia increased the passive avoidance memory (P < 0.001) and latency time of painful tail reflex significantly (P < 0.05). CONCLUSIONS: Ferulago angulata extract, because of its antioxidant activities, is probably capable of removing free radicals and oxidant substances from brain and thus it can improve behavioral disorders in brain hypoperfusion ischemia model.

18.
J Pediatr Urol ; 10(6): 1051-8, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24909608

RESUMEN

OBJECTIVE: Tissue-engineered prepuce scaffold (TEPS) is a collagen-rich matrix with marvelous mechanical properties, promoting in vivo and in vitro tissue regeneration. In this study, adipose-derived mesenchymal stem cells (ADMSCs) were used to seed TEPS for bladder wall regeneration. Its potential in comparison with other materials such as polyglycolic acid (PGA) and nanofibrous scaffolds were evaluated. MATERIALS AND METHODS: Rat ADMSCs were cultured and seeded into prepared TEPS. A synthetic matrix of electrospun nanofibrous polyamide was also prepared. Sprague Dawley rats (n=32) underwent bladder wall regeneration using (a) TEPS, (b) TEPS+PGA, (c) TEPS+nanofibrous scaffold, and (d) ADMSC-seeded TEPS, between bladder mucosa and seromuscular layer. Animals were followed for 30 and 90 days post implantation for evaluation of bladder wall regeneration by determining CD31/34 and SMC α-actin. Cystometric evaluation was also performed in all groups and in four separate rats as sham controls 3 months postoperatively. RESULTS: Histopathological analysis showed well-organized muscular wall generation in ADMSC-seeded TEPS and TEPS+three-dimensional (3D) nanofibrous scaffold without significant fibrosis after 90 days, while mild to severe fibrosis was detected in groups receiving TEPS and TEPS+PGA. Immunohistochemistry staining revealed the maintenance of CD34+, CD31+, and α-SMA in ADMSC-seeded TEPS and TEPS+3D nanofibrous scaffold with significantly higher density of CD34+ and CD31+ progenitor cells in ADMSC-seeded TEPS and TEPS+3D nanofibrous scaffold, respectively. CONCLUSIONS: This work has crucial functional and clinical implications, as it demonstrates the feasibility of ADMSC-seeded TEPS in enhancing the properties of TEPS in terms of bladder wall regeneration.


Asunto(s)
Células Madre Mesenquimatosas/citología , Regeneración , Ingeniería de Tejidos/métodos , Andamios del Tejido , Vejiga Urinaria/cirugía , Animales , Células Cultivadas , Niño , Prepucio/citología , Humanos , Masculino , Ratas , Ratas Sprague-Dawley , Vejiga Urinaria/fisiología , Urotelio
19.
In Vitro Cell Dev Biol Anim ; 49(4): 287-94, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23519561

RESUMEN

In spite of previous reports, the role of transforming growth factor-ß1 (TGF-ß1) on cardiomyocyte differentiation, especially in the present autologous serum (AS) in culture medium, is still unclear. So, the purpose of this study was to investigate the potential of rat bone marrow mesenchymal stem cells (rBMSCs) to proliferate and differentiate towards cardiomyocyte lineage with the use of AS. Most expansion protocols use a medium supplemented with fetal bovine serum (FBS) as nutritional supplement. FBS is an adverse additive to cells that are proliferated for therapeutic purposes in humans because the use of FBS carries the risk of transmitting viral and bacterial infections and proteins that may initiate xenogeneic immune responses. Therefore, bone marrow cells were cultured in a medium supplemented with 10% AS, 10% FBS, and serum free medium (SFM). Then, rBMSCs were cultured with TGF-ß1 (10 ng/ml) for 2 wk. The number of viable cells in AS and FBS groups were measured with MTT assay. Beating areas frequency, up to fourth week after plating, were monitored and evaluated daily. The characteristics of cardiomyocytes were assessed by semi-quantitative reverse transcription polymerase chain reaction and western blot. MTT result indicated that rBMSCs in AS proliferated markedly faster than FBS and SFM. The number of beating areas significantly increased in AS compared to FBS medium. A noticeable increase in the cardiac genes expression was observed in AS. Moreover, western blot analysis confirmed that cardiac proteins were increased in the AS condition. In conclusion, the present study could be extended toward the safe culture of MSCs for the treatment of heart defects.


Asunto(s)
Diferenciación Celular , Células Madre Mesenquimatosas/citología , Miocitos Cardíacos/citología , Suero/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Animales , Células Cultivadas , Medio de Cultivo Libre de Suero , Células Madre Mesenquimatosas/metabolismo , Miocitos Cardíacos/metabolismo , Ratas
20.
Cell Biol Int ; 33(5): 607-16, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19286467

RESUMEN

The controversial effect of autologous serum (AS) on human mesenchymal stem cells (MSC) was studied in rat MSC culture. Rat bone marrow cells were plated in a medium containing either FBS (fetal bovine serum) or AS were cultured to passage 3, during which the population doubling number (PDN) of both cultures were measured and compared statistically. The number of viable cells, the cell colonogic activity, and cell growth rate were also compared. In addition, mineralization in the osteogenic cultures from each system was measured. Our data indicated that AS enriched medium provided a microenvironment in which growth rate as well as bone differentiation of the isolated MSCs were significantly higher than in FBS enriched medium.


Asunto(s)
Células de la Médula Ósea/citología , Medios de Cultivo/química , Células Madre Mesenquimatosas/citología , Suero/metabolismo , Animales , Células de la Médula Ósea/metabolismo , Calcificación Fisiológica/fisiología , Bovinos , Técnicas de Cultivo de Célula , Diferenciación Celular , Proliferación Celular , Femenino , Humanos , Masculino , Células Madre Mesenquimatosas/metabolismo , Ratas , Ratas Wistar , Suero/química , Células Madre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...